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Abstract 

This paper analyzes dynamic behaviors of dressed-photon—phonon (DPP) energy transfer by using a blown-up quantum 

walk model. Numerical calculations are carried out in the case when a large nanometer-sized particle NPO is surrounded 

by five small particles NPIs. Spectral profiles of the DPP transfer indicate that the speeds of the inter-NP transfer, intra-

NP transfer, and local transfer are different with each other. This difference is the possible origin of the pulsative behavior 

found in the transitional period. In the case when the number of the transfer routes is large, the DPP rapidly transfers to 

reach the NPO. Conversely, in the case where the number of transfer routes is small, the DPP transfers slowly. It is 

presumed that such unique nature of the DPP transfer is governed by the off-shell scientific principle of maximizing the 

average entropy generation. 

1 Introduction 

Recent theoretical studies have succeeded in drawing a precise physical picture of the creation process 
of a dressed photon (DP) [1-3]. Furthermore, by using a quantum walk (QW) model, detailed analyses 

of energy transfers of a dressed-photon–phonon (DPP) among nanometer-sized particles (NPs) have 

made striking progress. Here, the DPP is a quantum field that is created as a result of interactions 
between DPs and phonons.  
As a successful example of these analyses, the QW model has been used to evaluate the experimental 

results on optical-wavelength conversion realized by the DPP energy transfer from small NPs to a 
large NP [4]. Numerical calculations have been carried out in the case where a large NP used as an 
output signal terminal (OST: NPO) was surrounded by small NPs used as input signal terminals (ISTs: 
NPIs). Figure 1 schematically illustrates this arrangement, in which an NPO is fixed on a hub [5]. Five 
NPIs are fixed on the rim in a rotationally symmetric manner. They are also connected to the NPO, as 
represented by spokes. This rim and spoke arrangement represents the DPP energy transfer routes. 
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Numerical calculations evaluated the stationary values of the input signal transfer rates (ISTR) from 
the ISTs to the OST. The value of the output signal transfer rate (OSTR) from the OST to the outer 
space was also evaluated.  

Further calculations have been carried out for the case where the rotational symmetry above was 
broken, that is, when some spokes were lost. The results indicated that the DPP energy transfer routes 
were a three-fold degenerate bright walk in the case where the number of connected spokes, conn , 
was odd. Thus, even if some spokes were lost, the stationary values of the OSTR were kept equal to 
that of conn =5.  

In the case where conn  was even, the energy transfer routes were composed of bright and dark walks. 
Since some input signals flowed into the dark walks, the stationary value of the OSTR was smaller 
than that of the case when conn  was odd. The degeneracy in the bright walk and the contribution of 
the dark walk were found not only in the pentagonal arrangement (Fig. 1) but also in other polygonal 
arrangements, which demonstrated that their features were independent of the number of NPIs on the 
rim.  

 

Fig. 1 Arrangement of nanometer-sized particles (NPs). 

(In) and (Out) represent an input signal and an output signal, respectively. 

 
It should be noted that the stationary values were governed by the dynamic behavior of the DPP 

energy transfer in the transitional period prior to reaching the stationary state. A representative feature 
of such behavior was the pulsative variations of ISTR and OSTR, as shown in Fig.2(a) in ref. [5]. The 
present paper reports the numerically calculated results of this dynamic behavior. 
 

2 Analyses using a blown-up quantum walk model 
 
The arrangement in Fig. 1 is replaced by Fig. 2 in order to demonstrate a blown-up QW model that 
was used for analyzing the dynamic behavior [6]. Red arrows represent the inter-NP transfer routes 
of the DP between adjacent NPIs and between the NPIs and NPO. Small blue circles in the NPIs and 
NPo represent the inner sites that are connected with the red arrows. Blue arrows represent the intra-
NP transfer routes of the DP between these inner sites. Green arrows are the self-loops that represent 
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the local transfer routes of a localized phonon at each inner site. The numbers of the red, blue, and 
green arrows are 20, 26, and 26, respectively. Thus, the total number of arrows is 72. 

 
Fig. 2 A blown-up QW model. 

 
A three-row vector is used to represent the probability amplitude of creating the DPP [7]:  
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where [ ] represents the vector at time t   and at the position ( , )x y  . DPy +  and DPy −  are the 
probability amplitudes of the DPs that hop in mutually- opposite directions, and Phonony  is that of 

the phonon. Its tempo-spatial behavior is derived by solving evolution equations for ,( , )t x yψ


, in which 

the sum of the coefficient matrices ( P+ , P− , and 0P ) is [7] 
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Here, off-diagonal elements J  and χ  are the DP hopping energy and DP-phonon coupling energy, 
respectively. Diagonal elements ε±  and 0ε  are eigen-energies of DPs and phonon. The numbers of 
the eigen-vectors and eigen-values of this matrix are both 72, which corresponds to the total number 

of arrows above. Figure 3 shows the absolute values nλ  of the eigen-values plotted in descending 
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order n (=1–72). Their maximum and minimum values are 1.0 and 0.92, respectively.  
In order to analyze the features of the DPP transfer rate nC , the value nC  on each arrow in 

Fig. 2 is spectrally resolved based on these eigen-values in Fig. 3. Figures 4(a), (b), and (c) show 
examples of these spectra on red, blue, and green arrows, respectively.  
 

 

Fig. 3 The absolute values nλ  of the eigen-values arranged in descending order n  (=1–72). 

 

 
Fig. 4 Examples of spectral profiles. 

(a), (b), and (c) are the spectra for the routes of inter-NP transfer (6-1 – 1-2), intra-NP transfer (1-1 – 1-2), and local 

transfer (1-1 – 1-1), which are represented by the red, blue, and green arrows, respectively.  

CE : The energy at the spectral center. 
CEδ : The spectral width. 

 
In order to understand the features of these complicated and wide spectral profiles, the energy 

CE  at the spectral center is calculated by taking an average of nC , with nλ  used as a weighting 

factor: 

72 72

C n n
1 1

n
n n

E C Cλ
= =

=∑ ∑  .      (3) 

The spectral width, a measure for representing the magnitude of energy fluctuations, is evaluated by 
the value of the standard deviation CEδ :  

22
C C CE E Eδ = − .        (4) 
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3 The energy at the spectral center and the magnitude of fluctuations 
 

The left, center, and right parts of Fig. 5 show the energies C R
E , C B

E , and C G
E  at the spectral 

centers for red ( n =1–20) , blue ( n =21–46), and green ( n =47–72) arrows, respectively. This figure 

indicate that their average values ( C R
E , C B

E , and C G
E ) satisfy the inequality 

C C CG R B
E E E> > .       (5) 

 

Fig. 5 The energy at the spectral center. 

C R
E , 

C B
E , and 

C G
E  are the average values for red ( n =1–20), blue ( n =21–27), and green ( n =28–72) arrows. 

They are represented by horizontal broken lines. 

 
 It should be noted that the temporal behavior of the probability amplitude of eq. (1) is the 

unitary transform of its initial value 0,(0,0)ψ


 and is expressed as  

,( , ) 0,(0,0)exp( ( / ) )t x y i E tψ ψ=
 

 ,      (6) 

where E  is the energy. Since the exponential function in this expression indicates that the speed of 

the temporal variation of ,( , )t x yψ


 is proportional to E , the inequality of eq. (5) is transformed to 

G R Bs s s> > ,          (7) 
where Rs , Bs , and Gs  represent the transfer speeds of the DPPs that pass through the red, blue, and 
green arrows, respectively. That is, the transfer speeds on these arrows are different from each other. 
This difference is a possible origin of the pulsative behavior that was pointed out at the end of Section 
1 (Fig. 2(a) in ref. [5]).  

The discussions above are for the arrangement of Figs. 1 and 2, in which five spokes are 
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connected ( conn =5). However, since ref. [5] dealt also with arrangements in which some spokes were 
lost, the discussions below deal with these arrangements, as shown in Fig. 6. (The arrangement {1} 
in this figure corresponds to that of Figs. 1 and 2.) Table 1 summarizes the numbers of arrows for 
arrangements {1} to {9}. 

 

 

 

 
Fig. 6 Blown-up QW models for nine arrangements. 

(a)-(c) Arrangements {1}–{3}, for which the number of connected spokes, conn ,  is odd (=5,3,1). 

(d)-(f) Arrangements {4}–{6}, for which the number of connected spokes, conn ,  is even (=4,4,2). 

(g)-(i) Arrangements {7}–{9}, for which the number of connected spokes, conn ,  is even (=2,2,2). 
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Table 1 The numbers of arrows for arrangements {1}–{9}. 

The number conn of the connected spokes is odd for {1}–{3} and even for {4}–{9}. 

Arrangement conn  Number of  

red arrows 

Number of  

blue arrows 

Number of  

green arrows 

Total number of 

arrows N  

{1} 5 20 26 26 72 

{2} 3 16 22 22 60 

{3} 1 12 18 18 48 

{4} 4 18 24 24 66 

{5} 4 18 24 24 66 

{6} 2 14 20 20 54 

{7} 2 14 20 20 54 

{8} 2 14 20 20 54 

{9} 2 14 20 20 54 

 

 Figure 7(a) shows the averaged values C R
E  , C B

E  , and C G
E  . It shows that the 

inequality of eq. (5) for arrangement {1} holds also for arrangements {2}–{9}. Furthermore, it shows 

that the averaged values ( C R
E , C B

E , and C G
E ) are the smallest for arrangement {3}, in which 

the conn  is the smallest (=1). In contrast, Fig. 7(b) shows that the calculated value of the average 

CEδ  of the standard deviation of eq. (4) is the largest for arrangement {3} ( conn =1).  
 

 
Figures 7 Calculated values for arrangements {1}–{9}. 

(a) The value  C R
E , C B

E , and C G
E . 

(b) The average 
CEδ  of the standard deviation for the green, red, and blue arrows. Since the values for these three 

arrows were nearly equal, they are represented by black squares. 
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4 Relation between the total number of arrows and the transfer speed 
 

Figure 8(a) shows the calculated values of the average C Total
E  that were derived by combining the 

values of C R
E , C B

E , and C G
E . This figure indicates that the value C Total

E  is the smallest 

for arrangement {3}, as was the case of Fig. 7(a). It is fairly small for arrangements {6}–{9}.  

In order to understand this, Fig. 8(b) shows the values C Total
E   that were plotted as a 

function of the total number of arrows, N , for arrangements {1}–{9}. By referring to eq. (6), the 

linear relation between N  and C Total
E  in this figure indicates that the transfer speed increases 

with increasing N  . Thus, in the case where the number of connected spokes is large ( conn  =5; 
arrangement {1} in Fig.6; N =72) , the DPP rapidly transfers to reach the OST even though it has to 
pass through the large number of arrows. In contrast, in the case of a small conn  ( conn =1; arrangement 
{3} in Fig.6; N =48), the DPP slowly transfers to reach the OST even though the number of arrows 
is small. It can be presumed that such a unique nature of the DPP transfer is governed not by the on-
shell scientific principle of least action but by the off-shell scientific principle of maximizing the 
average entropy generation, as has been pointed out in refs. [8,9]. 

 

 
Fig. 8 Calculated values of the average 

C Total
E . 

(a) Horizontal axis: Arrangements {1}–{9} and the number of connected spokes, conn . 

(b) Horizontal axis: The total number of arrows, N , for arrangements {1}–{9}. 

 
5 Summary 
 
This paper analyzed the dynamic behavior of DPP energy transfer by using a blown-up quantum walk 
model. Numerical calculations were carried out in the case where a large NPO (an output signal 
terminal: OST) was surrounded by five small particles NPIs (input signal terminals: ISTs). 
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 Spectral profiles of the DPP transfer indicated that the speeds of the inter-NP transfer, intra-
NP transfer, and local transfer were different from each other. This difference was the possible origin 
of the pulsative behavior that was found in the transitional period.  

In the case where the number of transfer routes was large, the DPP rapidly transferred to 
reach the OST. In contrast, in the case where this number was small, the DPP transferred slowly. It 
was presumed that such a unique nature of the DPP transfer is governed by the off-shell scientific 
principle of maximizing the average entropy generation. 
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