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Abstract: We consider the discrete-time quantum walk whose local dynamics is denoted by a
common unitary matrix C at the perturbed region {0, 1, . . . , M− 1} and free at the other positions.
We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed
region receives the inflow ωn at time n (|ω| = 1). From this expression, we compute the scattering
on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the
perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of
the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We
find a discontinuity of the energy with respect to the frequency of the inflow.

Keywords: quantum walk; scattering theory; energy

1. Introduction

There is no doubt that a study on scattering theory is one of the most interesting
topics of the Schrödinger equation. Recently, it has been revealed that the scatterings of
some fundamental stationary Schrödinger equations on the real line with not only delta
potentials [1–3] but also continuous potential [4] can be recovered by discrete-time quantum
walks. These induced quantum walks are given by the following setting: the non-trivial
quantum coins are assigned to some vertices in a finite region on the one-dimensional lattice
as the impurities and the free-quantum coins are assigned at the other vertices. The initial
state is given so that a quantum walker inflows into the perturbed region at every time
step. It is shown that the scattering matrix of the quantum walk on the one-dimensional
lattice can be explicitly described by using a path counting in [5] and this path counting
method can be described by a discrete analogue of the Feynmann path integral [4]. There
are some studies for the scattering theory of quantum walks under slightly general settings
and related topics [6–12].

Such a setting is the special setting of [13,14] in that the regions where a quantum
walker moves freely coincide with tails in [13,14], and the perturbed region can be regarded
as a finite and connected graph in [13,14]. The properties of not only the scattering on
the surface of the internal graph but also the stationary state in the internal graph for the
Szegedy walk are characterized by [15] with a constant inflow from the tails.
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By [14], this quantum walk converges to a stationary state. Therefore, let ~ϕ(·):
Z→ C2 be the stationary state of the quantum walk on Z. The perturbed region is
ΓM := {0, 1, . . . , M− 1} and we assign the quantum coin

C =

[
a b
c d

]
to each vertex in ΓM. The inflow into the perturbed region at time n is expressed by ωn

(|ω| = 1). In this paper, we compute (1) the scattering on the surface of the perturbed
region ΓM in the one-dimensional lattice; (2) the energy of the quantum walk. Here, the
energy of quantum walk is defined by

EM(ω) =
M−1

∑
x=0
||~ϕ(x)||2C2 .

This is the quantity that quantum walkers accumulate to the perturbed region ΓM in the
long time limit. We obtain a necessary and sufficient condition for the perfect transmitting,
and also obtain the energy. As a consequence of our result on the energy, we observe a
discontinuity of the energy with respect to the frequency of the inflow. Moreover, our
result implies that the condition for θ(ω) ∈ N is equivalent to the condition for the perfect
transmitting. Then, we obtain that the situation of the perfect transmitting not only releases
quantum walker to the opposite outside but also accumulates quantum walkers in the
perturbed region. Note that since this quantum walk can be converted to a quantum walk
with absorption walls, the problem is reduced to analysis on a finite matrix EM, which is
obtained by picking up from the total unitary time evolution operator with respect to the
perturbed region ΓM. See [16] for a precise spectral results on EM.

This paper is organized as follows. In Section 2, we explain the setting of this model
and give some related works. In Section 3, an explicit expression for the stationary state
is computed using the Chebyshev polynomials. From this expression, we obtain the
transmitting and reflecting rates and a necessary and sufficient condition for the perfect
transmitting. We also give the energy in the perturbed region. In Section 4, we estimate the
asymptotics of the energy to see the discontinuity with respect to the incident inflow.

2. The Setting of our Quantum Walk

The total Hilbert space is denoted byH := `2(Z;C2) ∼= `2(A). Here A is the set of arcs
of one-dimensional lattice whose elements are labeled by {(x; R), (x; L) | x ∈ Z}, where
(x; R) and (x; L) represents the arcs “from x− 1 to x“, and “from x + 1 to x”, respectively.
We assign a 2× 2 unitary matrix to each x ∈ Z so-called local quantum coin

Cx =

[
ax bx
cx dx

]
.

Putting |L〉 := [1, 0]>, |R〉 := [0, 1]> and 〈L| = [1, 0], 〈R| = [0, 1], we define the following
matrix valued weights associated with the motion from x to left and right by

Px = |L〉〈L|Cx, Qx = |R〉〈R|Cx,

respectively. Then, the time evolution operator on `2(Z;C2) is described by

(Uψ)(x) = Px+1ψ(x + 1) + Qx−1ψ(x− 1)

for any ψ ∈ `2(Z;C2). Its equivalent expression on `2(A) is described by

(U′φ)(x; L) = ax+1φ(x + 1; L) + bx+1φ(x + 1; R),

(U′φ)(x; R) = cx−1φ(x− 1; L) + dx−1φ(x− 1; R) (1)
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for any ψ ∈ `2(A). We call ax and dx the transmitting amplitudes, and bx and cx the
reflection amplitudes at x, respectively. If we put ax = dx = 1 and bx = cx =

√
−1 = i,

then the primitive form of QW in [17] is reproduced. Remark that U and U′ are unitarily
equivalent such that letting η : `2(Z;C2)→ `2(A) be

(ηψ)(x; R) = 〈R|ψ〉, (ηψ)(x; L) = 〈L|ψ〉

then we have U = η−1U′η. The free quantum walk is the quantum walk where all local
quantum coins are described by the identity matrix, i.e.,

(U0ψ)(x) =
[

1 0
0 0

]
ψ(x + 1) +

[
0 0
0 1

]
ψ(x− 1).

Then, the walker runs through one-dimensional lattices without any reflections in the
free case.

In this paper, we set “impurities” on

ΓM := {0, 1, . . . , M− 1}

in the free quantum walk on one-dimensional lattice; that is,

Cx =



[
a b
c d

]
: x ∈ ΓM,

I2 : x /∈ ΓM.

(2)

We consider the initial state Ψ0 as follows.

Ψ0(x) =

{
eiξx|R〉 : x ≤ 0;
0 : otherwise,

where ξ ∈ R/2πZ. Note that this initial state belongs to no longer `2 category. The region
ΓM is obtained a time dependent inflow e−iξn from the negative outside. On the other
hand, if a quantum walker goes out side of ΓM, it never come back again to ΓM. We can
regard such a quantum walker as an outflow from ΓM. Roughly speaking, in the long
time limit, the inflow and outflow are balanced and obtain the stationary state with some
modification. Indeed, the following statement holds.

Proposition 1 ([14]).

1. This quantum walk converges to a stationary state in the following meaning:

∃ lim
n→∞

ei(n+1)ξ Ψn(x) =: Φ∞(x).

2. This stationary state is a generalized eigenfunction satisfying

UΦ∞ = e−iξΦ∞.

Relation to an absorption problem
Let the reflection amplitude at time n be γ̃n(z) := 〈L|Φn(−1)〉 with z = eiξ . We can

see that γ̃n(z) is rewritten by using U′ as follows:

z−1γ̃n+1(z) = 〈δ(−1;L), U′δ(0;R)〉+ 〈δ(−1;L), U′2δ(0;R)〉z

+ 〈δ(−1;L), U′3δ(0;R)〉z2 + · · ·+ 〈δ(−1;L), U′n+1
δ(0;R)〉zn
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The first term is the amplitude that the inflow at time n cannot penetrate into ΓM; the m-th
term is the amplitude that the inflow at time n− (m− 1) penetrates into ΓM and escapes
ΓM from 0 side at time n. Therefore, each term corresponds to the “absorption” amplitude
to −1 with the absorption walls −1 and M with the initial state δ(0;R). Then

Remark 1. The reflection amplitude 〈L|Φ∞(−1)〉 = limn→∞ γ̃n(z) coincides with the generating
function of the absorption amplitude to −1 with respect to time n while the transmitting amplitude
〈R|Φ∞(M)〉 = limn→∞ τ̃n(z) coincides with the generating function of the absorption amplitude
to M with respect to time n.

Put γn := |〈δ(−1;L), U′nδ(0;R)〉|2 and τn := |〈δ(M;R), U′nδ(0;R)〉|2 which are the absorp-
tion/ first hitting probabilities at positions −1 and M, respectively, starting from (0 : R).
From the above observation, for example, we can express the m-th moments of the absorp-
tion/hitting times to −1 and M as follows:

∑
n≥1

nmγn =
∫ 2π

0
〈L|Φ∞(−1)〉

(
−i

∂

∂ξ

)m
〈L|Φ∞(−1)〉 dξ

2π
, (3)

∑
n≥1

nmτn =
∫ 2π

0
〈R|Φ∞(M)〉

(
−i

∂

∂ξ

)m
〈R|Φ∞(M)〉 dξ

2π
. (4)

Relation to Scattering of quantum walk
The stationary state Φ∞ is a generalized eigenfunction of U in `∞(Z;C2). The scatter-

ing matrix naturally appears in Φ∞ (see [5]). In the time independent scattering theory, the
inflow can be considered as the incident “plane wave“, and the impurity causes the scat-
tered wave by transmissions and reflections. Thus, we can see the transmission coefficient
and the reflection coefficient in Φ∞(x) for x ∈ Z \ ΓM. For studies of a general theory of
scattering, we also mention the recent work by Tiedra de Aldecoa [12].

3. Computation of Stationary State
3.1. Preliminary

Recall that |L〉 and |R〉 represent the standard basis of C2; that is, |L〉 = [1, 0]> and
R〉 = [0, 1]>. Let χ : `2(Z;C2)→ `2(ΓM;C2) be a boundary operator such that (χψ)(a) =
ψ(a) for any a ∈ {(x; R), (x; L) | x ∈ ΓM}. Here, the adjoint χ∗ : `2(ΓM;C2)→ `2(Z;C2) is
described by

(χ∗ϕ)(a) =

{
ϕ(a) : a ∈ {(x; R), (x; L) | x ∈ ΓM},
0 : otherwise.

We put the principal submatrix of U with respect to the impurities by EM := χUχ∗. The
matrix form of EM with the computational basis χδ0|L〉, χδ0|R〉, . . . , χδM−1|L〉, χδM−1|R〉
is expressed by the following 2M× 2M matrix:

EM =



0 P
Q 0 P

Q 0
. . .

. . . . . . P
Q 0

 (5)

We express the ((x; J), (x′; J′)) element of EM by

(EM)(x;J),(x′ ;J′) :=
〈

χδx|J〉, EMχδx′ |J′〉
〉
C2M

.
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Putting ψn := χΨn, we have

ψn+1 = χU(χ∗χ + (1− χ∗χ))Ψn

= EMψn + χU(1− χ∗χ)Ψn

= EMψn + e−i(n+1)ξ χδ0|R〉.

Then, putting φn := ei(n+1)ξ ψn, we have

e−iξ φn+1 = EMφn + χδ0|R〉. (6)

From [14], ϕ := ∃ limn→∞ φn. Then, the stationary state restricted to ΓM satisfies

(e−iξ − EM)φ∞ = χδ0|R〉. (7)

About the uniqueness of this solution is ensured by the following Lemma since it includes
the existence of the inverse of (e−iξ − EM).

Lemma 1. Let EM be the above with a 6= 0.† Then σ(EM) ⊂ {λ ∈ C | |λ| < 1}.

Proof. Let ψ ∈ `2(ΓM,C2) be an eigenvector of eigenvalue λ ∈ σ(EM). Then

|λ|2||ψ||2 = ||EMψ||2 = 〈Uχ∗ψ, χ∗χUχ∗ψ〉 ≤ 〈Uχ∗ψ, Uχ∗ψ〉 = ||χ∗ψ||2 = ||ψ||2. (8)

Here, for the inequality, we used the fact that χ∗χ is the projection operator onto

span{δx|L〉, δx|R〉 | x ∈ ΓM} ⊂ `2(Z;C2)

while for the final equality, we used the fact that χχ∗ is the identity operator on `2(ΓM;C2).
If the equality in (8) holds, then χ∗χUχ∗ψ = Uχ∗ψ holds. Then, we have the eigenequation
Uχ∗ψ = λχ∗ψ by taking χ∗ to both sides of the original eigenequation χUχ∗ψ = λψ.
However, there are no eigenvectors having finite supports in a position independent
quantum walk on Z with a 6= 0 since its spectrum is described by only a continuous
spectrum in general. Thus, |λ|2 < 1.

Now, let us solve this Equation (7). The matrix representation of EM with the permu-
tation of the labeling such that (x; R)↔ (x; L) for any x ∈ ΓM to (5) is

EM ∼=



0 0 0 0
0 0 b a
d c 0 0 0 0
0 0 0 0 b a

d c
. . . . . .

0 0
. . . . . . 0 0

b a
d c 0 0
0 0 0 0



.
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Then, the Equation (7) is expressed by



z 0 0 0
0 z −b −a
−d −c z 0

0 z −b −a
−d −c z 0

. . . . . .

0 z −b −a
−d −c z 0

0 z





ϕ(0; R)
ϕ(0; L)
ϕ(1; R)
ϕ(1; L)

...

...
ϕ(M− 2; R)
ϕ(M− 2; L)
ϕ(M− 1; R)
ϕ(M− 1; L)



=



1
0
0
0
...
...
0
0
0
0



.

Here, we changed the way of blockwise of EM and we put z = e−iξ . Putting

Az :=
[

0 z
−d −c

]
, Bz :=

[
−b −a
z 0

]
,

we have [
z 0

]
~ϕ(0) = 1, Az~ϕ(0) + Bz~ϕ(1) = 0, Az~ϕ(1) + Bz~ϕ(2) = 0, . . .

. . . , Az~ϕ(M− 2) + Bz~ϕ(M− 1) = 0,
[
0 z

]
~ϕ(M− 1) = 0, (9)

where ~ϕ(x) = [ϕ(x; R), ϕ(x; L)]> for any x ∈ ΓM. The inverse matrix of Bz exists since
z 6= 0. Then, we have

~ϕ(1) = T~ϕ(0), ~ϕ(2) = T2~ϕ(0), . . . , ~ϕ(M− 1) = TM−1~ϕ(0), (10)

where

T = −B−1
z Az =

1
az

[
∆|a|2 −∆ab̄
−∆āb z2 + ∆|b|2

]
.

Here ∆ = det(P + Q) = det
[

a b
c d

]
. For the boundaries, there exists κ such that

~ϕ(0) =
[
z−1 κ

]
,
[
0 z

]
~ϕ(M− 1) = 0. (11)

By (10) and (11), κ satisfies 〈[
0
1

]
, TM−1

[
z−1

κ

]〉
= 0 (12)

which is equivalent to

κ = − z−1(TM−1)2,1

(TM−1)2,2
.

Now, the problem is reduced to considering the n-th power of T because the eigen-
vector is expressed by ~ϕ(n) = Tn~ϕ(0). Since T is a just 2× 2 matrix, we can prepare the
following lemma.

Lemma 2. Let A be a 2-dimensional matrix denoted by

A =

[
α β
γ δ

]
.
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1. (α− δ)2 + 4βγ = 0 and A 6= εI for some ε case. Let λ = (α + δ)/2. Then

An =

[
λn + α−δ

2 nλn−1 βnλn−1

γnλn−1 λn − α−δ
2 nλn−1

]

2. Otherwise. Let ζn := (det(A)1/2)n−1Un−1(
tr(A)

2 det(A)1/2 ) for n ≥ 1. Then

An =

[
ζn+1 − δζn βζn

γζn ζn+1 − αζn

]
,

where Un(·) is the n-th Chebyshev polynomial of the second kind.

Remark 2. The condition “(α− δ)2 + 4βγ = 0 and A 6= εI” is equivalent to the non-diagonalizability
of A.

Remark 3. For A = T case, the condition of 1. is reduced to

ω := ∆−1/2z ∈ {ε1|a|+ ε2i|b| | ε1, ε2 ∈ {±1}} =: ∂B.

Remark 4. For A = T case, the variable of the Chebyshev polynomial in 2. is reduced to

tr(T)/(2 det(T)1/2) = (ω + ω−1)/(2|a|).

Moreover, if ω = eik, the Chebyshev polynomial is described by U−1(·) = 0,

Un(cos k/|a|) =
λn+1
+ − λn+1

−
λ+ − λ−

(n ≥ 0).

Here, λ± in RHS are the roots of the quadratic equation

λ2 − 2 cos k
|a| λ + 1 = 0

with |λ−| ≤ |λ+|.

3.2. Transmitting and Reflecting Rates

Let us divide the unit circle in the complex plain as follows:

Bin = {eik | | cos k| < |a|}, ∂B = {eik | | cos k| = |a|}, Bout = {eik | | cos k| > |a|}. (13)

By the unitarity of
[

a b
c d

]
and using the Chebyshev recursion; Un+1(x) = 2xUn(x) −

Un−1(x), we insert (1) and (2) in Lemma 2 into (10), and we have an explicit expression for
the stationary state as follows.

Theorem 1. Let the stationary state restricted to ΓM = {0, 1, . . . , M− 1} be φ∞ and ~ϕ(n) :=
[φ∞(n; R) φ∞(n; L)]>. Then we have

~ϕ(n) =



z−1(α∆−1/2)−n

ωζ ′M−|a|ζ ′M−1

[
ωζ ′M−n − |a|ζ ′M−n−1

αbζ ′M−n−1

]
: ω /∈ ∂B

∆−1/2λn

εR |a|+iεI M|b|

[
εRα(εR|a|+ iεI |b|(M− n))

b(M− n− 1)

]
: ω ∈ ∂B

(14)
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for n = 0, 1, . . . , M− 1, where α = a/|a| and ζ ′m = Um−1(
ω+ω−1

2|a| ) (m ≥ 0), λ = sgn(εR)α
−1

∆1/2. Here εR = sgn(Re(ω)) and εI = sgn(Im(ω))

Since the transmitting and reflecting rates are computed by

T(ω) =

∣∣∣∣〈[1
0

]
, ~ϕ(M− 1)

〉
× d
∣∣∣∣2,

R(ω) =

∣∣∣∣〈[0
1

]
, ~ϕ(0)

〉
× a +

〈[
1
0

]
, ~ϕ(0)

〉
× b
∣∣∣∣2,

we obtain explicit expressions for them as follows.

Corollary 1. Assume abcd 6= 0. For any ω ∈ R/(2πZ), we have

T(ω) =
|a|2

|a|2 + |b|2ζ ′2M
(15)

R(ω) =
|b|2ζ ′2M

|a|2 + |b|2ζ ′2M
(16)

Note that the unitarity of the time evolution can be confirmed by T + R = 1. By
Corollary 1, we can find a necessary and sufficient conditions for the perfect transmitting;
that is , T = 1.

Corollary 2. Assume abcd 6= 0. Let ω = eik with some real value k. Then the perfect transmitting
happens if and only if

arccos
(

cos k
|a|

)
∈
{

`

M
π | ` ∈ {0,±1, . . . ,±(M− 1)}

}
.

On the other hand, the perfect reflection never occurs.

Remark that if ω /∈ Bin, then the perfect transmitting never happens.

3.3. Energy in the Perturbed Region

Taking the square modulus to ~ϕ(n) in Theorem 1, the relative probability at position
n ∈ ΓM = {0, . . . , M− 1} can be computed as follows.

Proposition 2. Assume abcd 6= 0. Then, the relative probability is described by

||~ϕ(n)||2 =


1

|a|2+|b|2ζ ′2M

(
|a|2 + |b|2ζ ′2M−n−1 + |b|2ζ ′2M−n

)
: ω /∈ ∂B

1
|a|2+M2|b|2

{
|a|2 + |b|2(M− n)2 + |b|2(M− n− 1)2} : ω ∈ ∂B

(17)

Proof. Let us consider the case for ω /∈ ∂B. Using the property of the Chebyshev polyno-
mial, we have ζ ′m+1ζ ′m−1 = ζ ′2m − 1 and (ω + ω−1)/|a| · ζ ′m = ζ ′m+1 + ζ ′m−1. It holds that

(ω + ω−1)ζ ′mζ ′m−1 = |a|(ζ ′m+1 + ζ ′m−1)ζ
′
m−1

= |a|(ζ ′2m + ζ ′
2
m−1 − 1).
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Since ζ ′m ∈ R, we have

q(m) := |ωζ ′m − |a|ζ ′m−1|2 = ζ ′
2
m + |a|2ζ ′

2
m−1 − |a|2(ω + ω−1)ζ ′mζ ′m−1

= |b|2ζ ′
2
m + |a|2,

Then, we have

||~ϕ(n)||2 =
1

q(M)
(q(M− n) + |b|2ζ ′

2
M−n−1)

=
|b|2ζ ′2M−n + |a|2 + |b|2ζ ′2M−n−1

|b|2ζ ′2M + |a|2
.

Then, we can see how much quantum walkers accumulate in the perturbed region
ΓM = {0, . . . , M− 1} by

EM(ω) =:
M−1

∑
n=0
||~ϕ(n)||2.

We call it the energy of quantum walk. The dependency of the energy on ω is symmetric
on the unit circle in the complex plain.

Corollary 3. Let EM(ω) be the above and assume abcd 6= 0. Then we have

EM(ω) =
1

|a|2 + |b|2ζ ′2M

{
M|a|2 + |b|2

(λ+ − λ−)2

(
ζ ′

2
M+1 − ζ ′

2
M−1 − 4M

)}
(18)

In particular, EM(·) is continuous at every ω∗ ∈ ∂B and

EM(ω∗) =
1
3

M
|a|2 + |b|2M2

(
3|a|2 + |b|2 + 2|b|2M2

)
.

Proof. Using the properties of the Chebyshev polynomial for example, U2
n −Un+1Un−1 = 1,

Tn = (Un −Un−2)/2, we have

(λm−1
+ + λm−1

− )ζ ′M = 2Tm−1Um−1 = ζ ′
2
m − ζ ′

2
m−1 + 1.

Then, we have

m−1

∑
n=0

ζ ′n
2
=

m−1

∑
n=0

(
λm
+ − λm

−
λ+ − λ−

)2

=
1

(λ+ − λ−)2

{
(λm−1

+ + λm−1
− )ζ ′m − 2m

}
=

1
(λ+ − λ−)2 (ζ

′2
m − ζ ′

2
m−1 − 2m + 1) (19)

Then, we have

M−1

∑
n=0
||~ϕ(n)||2 =

1
|a|2 + |b|2ζ ′2M

(
M|a|2 + |b|2

M−1

∑
n=0

ζ ′
2
M−n−1 + ζ ′

2
M−n

)

=
1

|a|2 + |b|2ζ ′2M

{
M|a|2 + |b|2

(λ+ − λ−)2

(
ζ ′

2
M+1 − ζ ′

2
M−1 − 4M

)}
Here, we used (19) in the last equality.



Symmetry 2021, 13, 1134 10 of 15

If ω ∈ ∂B, then by directly computation taking summation of (17) over n ∈ ΓM =
{0, 1, . . . , M− 1}, we obtain the conclusion. Let us see EM(·) is continuous at ∂B. We put
x := (1/|a|) cos k and ζ ′m(x) := ζ ′m. Remark that ω → ω∗ implies |x| → 1. In the following,
we consider x → 1 case. The Taylor expansion of ζ ′m(x) around x = 1 is

ζ ′m(1− ε) = m− m
3
(m2 − 1)ε + O(ε2).

The reason for obtaining the expansion until ε1 order is

ζ ′
2
M+1 − ζ ′

2
M−1 − 4M = O(ε2).

around x = 1. Note that (λ+ − λ−)2 = 4(x2 − 1). Then

(λ+ − λ−)
2 = −8ε + O(ε)

around x = 1. Then inserting all of them into (18), we obtain

lim
ω→ω∗

EM(ω) =
M

|a|2 + |b|2M2

(
|a|2 + |b|

2

3
+

2|b|2
3

M2
)

.

4. Asymptotics of Energy

If ω ∈ ∂B, then by Corollary 3, it is immediately obtained that

lim
M→∞

EM(ω)

M
=

2
3

. (20)

Let us consider the case of ω ∈ Bin ∪ Bout as follows. Note that

λ± =

{
sgn(cos k)e±θ : ω ∈ Bout,
e±iθ : ω ∈ Bin,

where (1/|a|) cos k = cosh θ (ω ∈ Bout), while (1/|a|) cos k = cos θ (ω ∈ Bin) such that
sin θ > 0 and sinh θ > 0. To observe the asymptotics of EM(ω) for ω /∈ ∂B, we rewrite
EM(ω) as follows:

EM(ω) =


1

|a|2 sinh2 θ+|b|2 sinh2 Mθ

{
(−|b|2 + |a|2 sinh2 θ)M + |b|2

4
sinh 2Mθ sinh 2θ

sinh2 θ

}
: ω ∈ Bout

1
|a|2 sin2 θ+|b|2 sin2 Mθ

{
(|b|2 + |a|2 sin2 θ)M− |b|

2

4
sin 2Mθ sin 2θ

sin2 θ

}
: ω ∈ Bin

(21)

From now on, let us consider the asymptotics of EM(ω) for large M. We summarize
our results on the asymptotics of EM(ω) in Table 1. In the following, we regard EM(ω)
as a function of θ, M; that is E(M, θ) because θ can be expressed by ω and consider the
asymptotics for large M.

4.1. ω ∈ Bout

Let us see that

lim
M→∞

EM(ω) =
cosh θ

sinh θ
=

∣∣∣ cos k
a

∣∣∣√∣∣∣ cos k
a

∣∣∣2 − 1

. (22)
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Note that sinh Mθ ∼ eMθ/2� M. Then by (21), we have

EM(ω) ∼ 1
|b|2e2Mθ

× |b|
2

4
e2Mθ sinh 2θ

sinh2 θ
=

cosh θ

sinh θ
.

By (22), if ω → ω∗ ∈ ∂B, then EM(ω) ∼ 1/θ → ∞. To connect it to the limit for the case of
ω∗ ∈ ∂B described by (20) continuously, we consider M→ ∞ and θ → 0 simultaneously,
so that Mθ ∼ θ∗ ∈ (0, ∞). Let us see that

EM(ω) ∼ 1
sinh2 θ∗

(
−1 +

sinh 2θ∗
2θ∗

)
M (23)

Noting that sinh mθ = sinh mθ∗ 6= 0, for m = 1, 2 and sinh θ ∼ θ∗/M, we have

EM(ω) ∼ 1
|b2| sinh2 θ∗

{
−|b|2M +

|b|2
4

sinh 2θ∗ × (2θ∗/M)

(θ∗/M)2

}
=

1
sinh2 θ∗

(
−1 +

sinh 2θ∗
2θ∗

)
M

Therefore, if we design the parameter θ∗ so that

2
3
=

1
sinh2 θ∗

(
−1 +

sinh 2θ∗
2θ∗

)
, (24)

then the energy of Bout continuously closes to that of ∂B in the sufficient large system
size M.

4.2. ω ∈ Bin

In this paper, since we determine θ satisfying sin θ > 0, we set θ ∈ (0, π). Remark that
EM(ω−1) = EM(ω) for any ω ∈ Bin because eiθ is invariant under this deformation.

By (21), if sin θ � sin Mθ � 1, we have

EM(ω) ∼
(

|a|2 sin2 θ + |b|2

|a|2 sin2 θ + |b2| sin2 Mθ

)
M, (25)

for sufficiently large M, which implies that

M . EM(ω) .
(

1 +
|b|2

|a|2 sin2 θ

)
M (26)

if θ /∈ {0, π} is fixed. Then, we conclude that EM(ω) = O(M) if θ /∈ Zπ is fixed for
ω ∈ Bin. On the other hand, if we design θ so that the condition of the perfect transmitting
is satisfied; θ = π`/M, |`| ∈ {1, . . . , M− 1} (see Corollary 1) and choose ` which is very
close to 0 or M, then | sin θ| � 1. Note that if | sin θ| → 0, which means ω → ω∗ ∈ ∂B,
then the coefficient of the upper bound in (26) diverges.

Then, from now on, let us consider the following three cases having a magnitude
relation between θ and M;

(i) 1� M� 1/ sin θ; (ii) M � 1/ sin θ; (iii) 1/ sin θ � M.

1. Case (i): 1� M� 1/ sin θ
Let us start to evaluate RHS of (21). Since

sin 2Mθ sin 2θ

4 sin2 θ
∼ M

{
1− 1

3
(1 + 2M2)θ

}
,
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the “{ }“ part in RHS of (21) can be evaluated by 2|b|2M3θ2/3. The denominator
of (21) is evaluated by 1/(|b|2M2θ2). Combining them, we have

EM(ω) ∼ 2M
3

(27)

This is consistent with (20).
2. Case (ii): M � 1/| sin θ|

Under this condition, the parameter θ lives around 0 or π if M is large. Since we
consider θ ∈ (0, π), we can evaluate sin θ by sin θ ∼ θ, or sin θ ∼ (π − θ) for large M.
We define θ′ = θ if 0 < θ < π/2 and θ′ = π − θ if π/2 ≤ θ < π. Because M sin θ � 1
by the assumption, we have Mθ′ � 1. Therefore, we put Mθ′ = θ∗ + ε with θ∗ � 1
and |ε| � 1. Then up to the value θ∗, let us see

EM(ω) ∼


1

sin2 θ∗

(
1− sin 2θ∗

2θ∗

)
M : θ∗ /∈ Zπ,

|b|2
|a|2θ2∗

M3 : θ∗ ∈ Zπ and εM� 1
M
ε2 : θ∗ ∈ Zπ and εM� 1

(28)

Note that if θ∗ /∈ Zπ, then sin θ = sin θ′ ∼ θ∗/M and sin2 Mθ = sin2 Mθ′ ∼ sin2 θ∗ 6=
0, sin 2Mθ = sin 2Mθ′ ∼ sin 2θ∗ and so on. Inserting them into (21), we have

EM(ω) ∼ 1
|a|2θ2∗/M2 + |b|2 sin2 θ∗

{
(|a|2θ2

∗/M2 + |b|2)M− |b|
2

4
sin 2θ∗ · 2θ∗/M

θ2∗/M2

}
∼ 1

sin2 θ∗

(
1− sin 2θ∗

2θ∗

)
M

On the other hand, if θ∗ ∈ Zπ, since sin θ ∼ θ∗/M and sin Mθ∗ ∼ ε, by (21), we have

EM(ω) ∼ 1
|a|2θ2 + |b|2ε2

{
|b|2M− |b|

2

4
2ε · 2θ∗/M
(θ∗/M)2

}
∼ |b|2M
|a|2θ′2 + |b|2ε2

∼


|b|2
|a|2θ2∗

M3 : ε� θ∗/M

M/ε2 : ε� θ∗/M

3. Case (iii): 1/| sin θ| � M
The “{ }” part in (21) is estimated by (|b|2 + |a|2 sin2 θ)M because Mθ � 1. Then,
we have

EM(ω) ∼
(

|a|2 sin2 θ + |b|2

|a|2 sin2 θ + |b2| sin2 Mθ

)
M, (29)

for sufficiently large M which is the same as (25). Let us consider the following
case study:

(a) max{| sin θ|, | sin Mθ|} � 1; (b) | sin θ|, | sin Mθ| � 1.

(a) Let us see EM(ω) = O(M) in this case. If sin θ � sin θM � 1, then the
coefficient of M in (29) is a finite value, then we have (26). On the other hand,
if each of sin θ or sin Mθ � 1, then (29) implies

EM(ω) ∼


1

sin2 Mθ
M : sin θ � sin Mθ � 1

(1 + |b|2
|a|2 sin2 θ

)M : sin Mθ � sin θ � 1
(30)
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(b) Since | sin Mθ| � 1, we evaluate | sin Mθ| by

| sin Mθ| ∼ min{|Mθ|, |π −Mθ|, . . . , |Mπ −Mθ|} =: δ.

Then, there exists a natural number m such that |θ −mπ/M| = δ/M. Note
that | sin θ| is also sufficiently small. Then, the natural number m must be
m/M � 1 if 0 < θ < π/2 and (M − m)/M � 1 if π/2 ≤ θ < π. Putting
m′ := min{m, M−m}, we have

| sin θ| ∼ |m
′

M
π ± δ

M
| ∼ δ

M
.

Therefore, | sin θ| � | sin Mθ| � 1 holds. Then, (29) implies

EM(ω) ∼ M
δ2 .

We summarize the above statements in the following theorem by setting θ = O(1/M),
ε = 1/Mα as a special but natural design of the parameters.

Theorem 2. Let us set ω ∈ Bin so that

θ = θ(M) =

(
xπ +

1
Mα

)
1
M

with the parameters x ∈ (0, M) ⊂ R and α ≥ 0. If x → 0 or x → M with fixed M, then
EM(ω) = O(M). On the other hand, if we take M→ ∞ and fix x′ = min{x, M− x} � 1, then
we have

EM(ω) =


O(M3) : x′ is natural number and α ≥ 1,
O(M1+2α) : x′ is natural number and 0 ≤ α < 1,
O(M) : otherwise.

Table 1. Asymptotics of the energy of EM(ω): cos θ = (ω + ω−1)/(2|a|), Mθ = θ∗ + ε.

1 � M � 1/θ 1 � M � 1/θ 1/θ � M

ω ∈ ∂B - - O(M)

ω ∈ Bout O(M)

{
O(θ−1) : 1/θ � 1
O(1) : 1/θ � 1

ω ∈ Bin O(M)


O(M3/θ∗

2) : θ∗ ∈ Zπ, εM� 1
O(Mε−2) : θ∗ ∈ Zπ, εM� 1
O(M) : θ∗ /∈ Zπ

5. Conclusions

We considered the quantum walk on the line with the perturbed region {0, 1, . . . , M};
that is, an non-trivial quantum coin is assigned at the perturbed region and the free
quantum coin is assigned at the other region. We set an `∞ initial state so that free quantum
walkers are inputted at each time step to the perturbed region. A closed form of the
stationary state of this dynamical system was obtained and we computed the energy of the
quantum walk in the perturbed region. This energy represents how quantum walker feels
“comfortable“ in the perturbed region. We showed that the “feeling” of quantum walk
depends on the frequency of the initial state. We can divide the region of the frequency into
three parts to classify the asymptotics of the energy for large M; Bin, Bout, δB. The region
Bin coincides with the continuous spectrum of the quantum walk with M → ∞ [5]. We
showed that quantum walkers prefer to the initial state whose frequency corresponds to the
continuous spectrum in the infinite system. More precisely, the energy of the quantum walk
in the perturbed region is estimated by O(1) if θ ∈ Bout, while one is estimated by O(M) if
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θ ∈ δB and almost all pseudo momentum θ gives O(M)-energy, but some momentum gives
O(M3) if θ ∈ Bin (Theorem 2). Such an initial state exactly exists but it is quite rare from
the view point of the Lebesgue measure. The most comfortable initial state for quantum
walkers has the frequency whose pseudo momentum θ lives in some neighborhood of the
boundary ∂B and accomplishes the perfect transmitting. If the momentum of the initial
state exceeds the boundary ∂B from the internal region Bin, then the energy is immediately
reduced to O(1). It suggests that the control of the frequency of the initial state to give
the maximal energy in the perturbed region is quite sensitive from the view point of
an implementation.

The spectrum of the boundary ∂B for M → ∞ produces the two singular points
of the density function of the Konno limit distribution and is characterized by the Airy
functions. In [16], details of the spectrum behavior around ∂B is discussed. Indeed, a kind
of “speciality“ also appears as the non-diagonalizability of T when θ ∈ ∂B in our work
(Lemma 2). Note that the infinite system does not have any edges, which means every node
is “impurity”, while our quantum walker feels the edges of the impurities; nodes 0 and
M. Therefore, to see the effect of such a finiteness on the behavior of the quantum walker
comparing with the infinite system, computing how a quantum walker is distributed in
the perturbed region is interesting which may be possible from the explicit expression
of the stationary state in Theorem 1. Moreover, to consider the escaping time from the
perturbed region seems to be useful to estimate the finesse as the interferometer motivated
by quantum walk and it would be possible to extract some information from (3) and (4).
This remains one of the interesting problems for the future.
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