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High power Si light emission device using dressed photons 

Tadashi Kawazoe 1, Motoichi Ohtsu2 
1 Institute of Advanced Laser Technology, Tokyo Denki University,  

5 Senju Asahi-cho, Adachi-ku, Tokyo, 120-8551, Japan, +81-3-5284-5981. 
2 The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan 

E-mail: kawazoe@mail.dendai.ac.jp 

Abstract: We fabricated Silicon-electro-luminescence devices e.g., a Si-LED and a Si laser. Their optical output powers of them were 
more than 1 W (Si-LED) and 10 W (Si-LD). 
 

1. Introduction 
Radiative recombination life time of the indirect-
transition-type semiconductor between electrons and 
holes is very long. Therefore, a kind of indirect-
transition-type semiconductor Silicon (Si) is not suitable 
for a light-emitting diode and a semiconductor laser. In 
spite of the disadvantage, the Si light emitter has been 
studied due to compatibility with electronics.  

In recent years, we have succeeded to demonstrate 
several near-infrared Si light emitting devices at room 
temperature fabricated using a phonon-assisted process 
[1-3].  Their operation principle and fabrication method 
are based on the photon-phonon interaction via dressed 
photons [4].  However, some part of emission 
mechanisms are still not clear. Especially, the influence 
of the black body radiationrelation on the EL spectrum 
shuld be discussed. Therefore, I measuer the EL spectra 
of the Si-LED at low temperature. As a result, the optical 
output power and efficiency were increased with the 
decreasing the device temperature drastically. In the 
presentation, I discuss the temperature dependence of Si-
LED. Finally, I review the high power Si-LED and Si-
LD. 

2. Dressed photon-phonon annealing 
The fabrication methods of the Si light emitting device 
with the p-n junction have already reported [1-3].  First, 
the p-n homojunction was fabricated by the ion-
implanting of a p-dopant (Boron:B) into an n-type Si 
substrate which was As-doped n-type Si wafer with an 
electrical resistivity of 5 Ω•cm. The energy of the ion-
implantation for the B doping was 700 keV, and the dose 
density was 5×1013 cm–2. Second, in order to optical 
activation of the Si p-n junction, the fabricated p-n 
homojunction is annealed by Joule heating causing the 
foreword injection current. During this annealing process, 
the p-n homojunction is irradiated by the infrared light. 
This annealing process has been named DPP (dressed 
photon-phonon) annealing. 

3. Experimental results 
Figure 1 shows the EL spectrum of the DPP annealed Si-
LED with the device size of 1mm2 at 77K. Due to the 
temperature dependence of the Si band-gap, the emission 
peak coming from the inter-band transition shifts shorter 
wavelength. The EL intensity increased drastically with 

the decreasing the device temperature. This indicates that 
the emission from the Si-LED does not originates from 
thermal effect but the electron hole recombination.  
  Figure 2 (a) shows the infrared photograph of the Si-
LED at the operation power of more than 100mW and 
the reference commercial 1.3 μm LED at the operation 
power of 2mW. This Si EL device is applicable to the Si-
Laser. Figure 2 (b) shows the fabricate Si-laser by DPP 
annealing. Its operation output power was reached to 
more than 10W. 
 
[1] T. Kawazoe, M. Ohtsu, K. Akahane, and N. Yamamoto, 

Appl. Phys. B 107, 659 (2012). 
[2] H. Tanaka, T. Kawazoe, M. Ohtsu, K. Akahane, and 

N. Yamamoto, Appl. Phys. A 121, 1377 (2015). 
[3] J. H. Kim, T. Kawazoe, and M. Ohtsu. Applied 

Physics A, 123.9 (2017): 606. 
[4] Y. Tanaka, K. Kobayashi, Physica E 40, 297 (2007). 
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Fig.1. A EL spectrum of  Si-LED at 77K and 
temperature dependence of the optical output power. 
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Fig.2. (a) A infrared photograph of emitting Si-LED. 
(b) Optical output power depending on the injection 
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Logical Fallacy of using the Electric Field

in Non-resonant Near-field Optics

Itsuki Banno∗

Graduate Faculty of Interdisciplinary Research
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(Dated: July 29, 2018)

Abstract

We find that the electric field is not a suitable physical quantity to describe the response of

a non-metallic material in the study of non-resonant near-field optics. In practice, we show the

spin-less one-electron two-level system responds differently to longitudinal and transverse electric

fields under the non-resonant condition. This difference originates from the non-relativistic nature

of the system, and should exist in actual many-electron systems. For this type of system, it is a

logical fallacy to use the constitutive equation in terms of the total electric field and the associated

permittivity. Recognizing this fallacy, both experimental and theoretical progress is needed in the

field of non-resonant near-field optics of non-metallic materials.

PACS numbers: 78.67.-n, 78.20.Bh, 41.20.-q, 42.25.Ja

Keywords: non-resonant condition, non-metallic material, optical near field, response function

∗Electronic address: banno@yamanashi.ac.jp
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FIG. 1: Target materials under near- and far-field incidences: the former is exposed to the inci-

dent longitudinal and transverse electric fields simultaneously (the left side), whereas the latter is

exposed to only the transverse field (the right side).

Under non-resonant conditions in the optical near field, non-metallic materials cause

various phenomena not observed in conventional optics, such as highly efficient light emis-

sion from indirect-transition-type semiconductors (LED[1, 2] and Laser[2, 3]), chemical

reaction with insufficient photon energy (chemical vapor deposition[4], optical near-field

lithography[5], optical near-field etching[6]), frequency up-conversion[7, 8], non-adiabatic

effect beyond forbidden transition (local energy concentration[9], nano-photonic gate

device[10]), and gigantic magneto-optical rotation of the LED[2, 11, 12]. Theoretically,

dressed photons, namely, the localized electromagnetic field easily coupled with phonons,

were introduced to allow non-adiabatic transitions[13–15].

This Rapid communication focuses on another fundamental role of the non-resonant

condition in near-field optics (NFO) with non-metallic materials. We examine the one-

electron two-level system close to both the light source and the observation point under long

wavelength approximation (LWA), and find it a logical fallacy to regard the total electric field

as causing the response under the non-resonant condition. In contrast, under the resonant

condition or the far-field observation condition, the electric field works as expected. These

findings originate from the non-relativistic nature of the system and should be applicable in

actual optical systems with non-metallic materials. For the readability, calculation details

are given in the last part of this paper.

Suppose a small-scale material is placed in the vicinity of a nanostructure, which functions

as a light source (Fig.1). In such a system, under the NF incidence condition, the target

material is exposed to longitudinal and transverse electric fields simultaneously, whereas

2



in a system under the far-field incidence condition, the target material is exposed only to

the transverse field, which survives far from the light source. Therefore, the coexistence of

longitudinal and transverse electric fields distinguishes such a system under the NF incidence

condition from that under the far-field incidence condition.

Here, the longitudinal electric field originates from the charge density on the nanostruc-

ture, obeys Coulomb’s law, and has a non-radiative nature to localize around the nanostruc-

ture. On the other hand, the transverse electric field originates from the transverse current

density on the nanostructure, obeys the Ampere-Maxwell law and Faraday’s law, and has

a radiative nature allowing it to propagate far from the light source, accompanied by the

magnetic field. (The longitudinal current density is determined via the charge conservation

law, once the charge density is known, and is not an independent source.) Therefore, the

two incidences coexisting in an NF optical system have distinct properties.

Furthermore, owing to the non-relativistic nature of the system, the scalar and vector

potentials appear in a different manner in the Hamiltonian, which governs the electron re-

sponse, for example, (13) of Calculation details (i) in the last part of this paper. Considering

that the scalar and vector potentials under the Coulomb gauge represent the longitudinal

and transverse electric fields, respectively, one may confirm that the two types of incidences

in NFO cause different responses. Now our question is the following: under what condition

can we observe these differences?

Before proceeding with the analysis, let us first classify the optical systems. The two

systems under near- and far-field incidence conditions in Fig.1 are subdivided into two classes

depending on the near- or far-field observation condition. These four classes are listed in

Table I, together with a summary of the results mentioned below. In particular, the systems

of (I′) and (II′) are the limiting cases of null longitudinal incidence of the systems (I) and

(II), respectively. Thus, in the systems (I′) and (II′), the longitudinal response vanishes and

the difference in response may not be observed. In the following, therefore, we focus mainly

on systems (I) and (II), in which longitudinal incidence exists.

Microscopic responses to longitudinal and transverse electric fields. Applying the

linear response theory and the LWA to the electron system of the target material on a small

scale, the induced charge and current densities (as a result of the response), ∆ρ(r, t) and

∆j(r, t), are described as the total derivative with respect to the longitudinal and transverse

electric fields (as the cause of the response), ∆E(ℓ)(0, t) and ∆E(t)(0, t), where 0 is the
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TABLE I: Classification of optical systems by distance from the target material to the light source

and distance from that to the observation point, together with a summary of the results; the

validity of the electric field as the cause of the response.

Near-field observation Far-field observation

Source:∆ρ and ∆j Source: ∆j

Near-field incidence :

∆E(ℓ) +∆E(t)

�
�

�
�

(I) NF optical system

non-resonant / resonant

�
�

�
�

(II) NF optical system

non-resonant / resonant

Validity of the electric field NG / OK OK / OK

Far-field incidence :

∆E(t)

�
�

�
�

(I′) NF optical system

non-resonant / resonant

�
�

�
�

(II′)conventional optical system

non-resonant / resonant

Validity of the electric field OK / OK OK / OK

representative position in the electron system under the LWA:

∆ρ(r, t) = χ
ρ←(ℓ)
j (r, ω)∆E

(ℓ)
j (0, t) + χ

ρ←(t)
j (r, ω)∆E

(t)
j (0, t) , (1)

∆ji(r, t) = χ
j←(ℓ)
ij (r, ω)∆Ė

(ℓ)
j (0, t) + χ

j←(t)
ij (r, ω)∆Ė

(t)
j (0, t) , (2)

where the partial derivative coefficients, χ······(r, ω)’s are susceptibilities (response func-

tions), and Einstein’s rule is used for the summation over the vector indices, for example,

χ
ρ←(ℓ)
j (r, ω)∆E

(ℓ)
j (0, t) =

3∑
j=1

χ
ρ←(ℓ)
j (r, ω)∆E

(ℓ)
j (0, t) . In (2), the time derivatives of the

two types of electric fields, namely, ∆Ė
(ℓ)
j (0, t) and ∆Ė

(t)
j (0, t), are regarded as the causes,

instead of the two types of electric fields themselves. The magnetic response vanishes in

the leading order under the LWA ; see Ref.[16]. The derivation of (1) and (2) is given in

Calculation details (i).

For simple evaluation of the susceptibilities in (1) and (2), suppose we have a spinless one-

electron system with two levels, the ground and excited states in the non-perturbed system

with eigenenergies, ℏω0 and ℏω1, and orbitals, φ0(r) and φ1(r), respectively. Those orbitals

are assumed to be bound states expressed by real functions, carry well-defined and distinct

spatial parities (even and odd parities), and form the normalized orthogonal complete set.

The excitation energy is ℏ∆ω1 ≡ ℏω1 − ℏω0 > 0; this finite excitation energy means that

the target is a non-metallic material, such as a molecule, nano-structured semiconductor
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and insulator.

The susceptibilities in (1) and (2) are derived in Calculation details (ii), and those leading

to the induced charge density result in the following:

χ
ρ←(ℓ)
j (r, ω) =χ

ρ←(t)
j (r, ω) = 2q2

η

η2 − 1

1

ℏω
Dj φ0(r)φ1(r) , (3)

where η ≡ℏ∆ω1

ℏω
=

excitation energy

photon energy
, and (4)

Di ≡
∫
d3r φ1(r) ri φ0(r) . (5)

This means that the responses to the longitudinal and transverse electric fields are common,

such that the induced charge density has a linear relationship with the total electric field,

namely, ∆ρ(r, t) = χ
ρ←(ℓ) or (t)
j (r, ω)

(
∆E

(ℓ)
j (0, t) + ∆E

(t)
j (0, t)

)
.

The susceptibilities leading to the induced current density are not so simple and result

in the following:

χ
j←(ℓ)
ij (r, ω) =

q2ℏ2

m

1

η2 − 1

1

(ℏω)2
Dj (∂iφ1(r)φ0(r)− φ1(r)∂iφ0(r)) , (6)

χ
j←(t)
ij (r, ω) =η2 χ

j←(ℓ)
ij (r, ω)− q2ℏ2

m

1

(ℏω)2
φ0(r)φ0(r) . (7)

The susceptibility to the transverse electric field, (7), is composed of two terms. The first

term, namely, the resonant term, includes the energy denominator enhanced under the

resonant condition, η ≃ 1, as in the susceptibility to the longitudinal electric field, (6). The

second term, namely, the non-resonant term, does not include such a resonance factor.

Equal responses under the resonant condition. Under the condition η ≃ 1 in all cases

in Table I, (7) is dominated by the resonant term (the first term) over the non-resonant term

(the second term) and asymptotically equals (6).

χ
j←(t)
ij (r, ω) ≃ χ

j←(ℓ)
ij (r, ω) . (8)

Equation (8) together with (3) reveal the equivalency of the responses to the longitudinal

and transverse electric fields, so that the total electric field is regarded as the cause of the

response in any optical system under the resonant condition listed in Table I .

Equal responses under the far-field observation condition. In the system (II) and

(II′) in Table I, the far field to be observed is insensitive to the details of the source but is

determined by the spatial average of the source. Under the LWA, such an average can be
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achieved by the spatial average of the susceptibilities. Detailed calculations are shown in

Calculation details (iii); the results are as follows.

χ
ρ←(ℓ)
j (r, ω) = χ

ρ←(t)
j (r, ω) = 0 , (9)

χ
j←(ℓ)
ij (r, ω) = χ

j←(t)
ij (r, ω) = δi j

q2ℏ2

mV
1

(ℏ∆ω1) 2 − (ℏω)2
, (10)

where the overline represents the spatial average and V is the volume of the target material.

From (9) and (10), one may not observe different responses to the two types of incidences

under the far-field observation condition. The null response represented in (9) is reasonable

because the induced charge density yields the longitudinal electric field, which has a non-

radiative nature and vanishes in the far-field regime.

Unequal responses under the non-resonant, NF incidence, and NF observation

conditions. The different responses claimed in the beginning of this Rapid communication

may be detected only in the system (I) in Table I under the non-resonant condition, which is

just the compliment to the popular optical systems under the resonant condition and/or the

far-field observation condition. In the NF optical system (I) with a non-metallic material un-

der the non-resonant condition, the total electric field is not the cause of the response; there-

fore, the response may not be described by the macroscopic constitutive equation (MCE),

namely, the linear relationship between the polarization and ”electric field” via permittivity,

and the microscopic susceptibilities are essential to treat separately the longitudinal and

transverse incidences.

In NFO, the response to the longitudinal electric field is discussed in Chap. 5 in Ref.[16]

and Chap. 9 in Ref.[18]. The present work is a further comparison of the two responses,

considering the non-resonant condition.

The present model is very simple and the responses may be modified in a many-electron

system or a low-symmetry system. However, the difference in the responses to the two

types of electric fields originates in the non-relativistic nature of the system (as stated in the

beginning of this Rapid communication), and should survive in actual NF optical systems

with non-metallic materials (the materials with finite excitation energy). Actually, there is

no reason for equating the two responses in the many-electron and low-symmetry systems.

Therefore, one may infer a guiding principle to highlight NF optical phenomena: under the

non-resonant condition and simultaneous NF-incident and NF-observation conditions, non-

metallic materials bring about NF-specific optical phenomena that may not be described
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by the MCE in terms of the electric field and the permittivity. Some of the experiments

mentioned in the beginning of this paper were performed under such conditions; thus, we

will analyze them in detail in future investigation.

A remark on applying the finite differential time domain (FDTD) method to an

NF optical system. The MCE in terms of the permittivity has been widely employed

to calculate the optical near field in the FDTD method[17]. One may notice that the

permittivity in the FDTD method carries a simple spatial dependence and leads to some

quantitative error. Actually, the microscopic susceptibilities, for example, (3), (6), and (7),

have rippling spatial distributions originating from the orbitals.

In the case of the NF optical system (I) in Table I with a non-metallic material under

the non-resonant condition, the situation is more serious because the concept electric field

is not available, such that it is a logical fallacy to use the MCE. Thus, a novel simulation

method is necessary.

NFO and many-electron problem. Why has the comparison of responses to the two

types of electric fields not been addressed in NF optical theory? First, in the long history of

optics, the NF optical system (I) in Table I under a non-resonant condition has been out of

focus. Such a system could not be resolved until the technical difficulty of NF observation was

overcome. Additionally, resonance phenomena continue to attract attention. Furthermore,

even in NFO, there has been less emphasis on non-metallic materials, as opposed to metallic

materials, which are essential for plasmonics.

The second reason is that the ordinary Hamiltonian for a many-electron system does

not include the longitudinal electric field, which is rewritten to the two-body Coulomb

interaction and eliminated. With this Hamiltonian, the response to the longitudinal electric

field incidence accompanies the Coulomb interaction, and is difficult to analyze. Therefore,

NFO is inevitably related to the many-electron problem; however, this has not been well

recognized for a long time. This study considered a one-electron system, avoiding the many-

electron problem. In future studies, the present scenario will be extended to a many-electron

system and nonlinear response, overcoming the many-electron problem, and applying the

findings to various phenomena mentioned in the beginning of this Rapid communication.

To the best of our knowledge, the present near-field optical system with non-metallic

material under the non-resonant condition is the third example that cannot be described

in terms of electric field and/or magnetic field, after the superconductor system with the
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Meissner effect and the electron system with the Aharonov-Bohm effect. The diversity of

non-metallic materials including semiconductors, dielectrics, and magnetic materials has

been utilized in conventional optics. We believe that focusing on non-metallic materials in

NFO promotes further development both conceptually and technically.

Calculation details. Here we provide the calculation details, including the derivation of

the unfamiliar relationship (28) between two types of dipole transition matrix elements.

(i) Derivation of the microscopic constitutive equations, (1) and (2). The incident scalar

and vector potentials, ∆ϕ(r, t) and ∆Ai(r, t), are assumed to be monochromatic with the

angular momentum ω, and are expressed using the Coulomb gauge and LWA, as follows:

∆ϕ(r, t) = ∆ϕ(r) cosωt =
(
∆ϕ(0)−∆E(ℓ)(0) · r

)
cosωt , (11)

∆A(r, t) = ∆A(r) sin(ωt+ ξ) = − 1

ω
∆E(t)(0) sin(ωt+ ξ) , (12)

where and ξ is the phase difference between the two incident potentials. The nanostructure

is assumed to be a robust light source, which is not affected by the target material, and the

electromagnetic field is assumed to be a classical field.

Using a spinless one-electron system, let us evaluate the induced charge and current

densities caused by the coexisting incidences of the scalar and vector potentials. The total

Hamiltonian is as follows:

Ĥ =
1

2m

(
ℏ
i

∂

∂xi(t)
− qAi(x(t), t)

)(
ℏ
i

∂

∂xi(t)
− qAi(x(t), t)

)
+ qϕ(x(t), t) , (13)

where t is time, x(t) is the position of the electron, and q(= −e),m are the electron charge

and mass, respectively. The perturbation Hamiltonian is given by∫
d3r

(
ρ̂(r, t)∆ϕ(r, t)− ĵi(r, t)∆Ai(r, t)

)
, (14)

where ρ̂(r, t), ĵi(r, t) are the Heisenberg operators of the charge and current densities defined

as

ρ̂(r, t) = qδ3(r− x(t)) , (15)

ĵi(r, t) =
q

2m

{(
ℏ
i

∂

∂xi(t)
− qAi(x(t), t)

)
δ3(r− x(t)) + δ3(r− x(t))

(
ℏ
i

∂

∂xi(t)
− qAi(x(t), t)

)}
.

(16)
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The linear response theory leads to the operators of the induced charge and current densities,

as follows:

∆ρ̂(r, t) =

∫ t

−∞
dt1

∫
d3r1

{
1

iℏ
[
ρ̂(0)(r, t) , ρ̂(0)(r1, t1)

]
∆ϕ(r1, t1)

− 1

iℏ

[
ρ̂(0)(r, t) , ĵ

(0)
i1

(r1, t1)
]
∆Ai1(r1, t1)

}
, (17)

∆ĵi(r, t) =

∫ t

−∞
dt1

∫
d3r1

{
1

iℏ

[
ĵ
(0)
i (r, t) , ρ̂(0)(r1, t1)

]
∆ϕ(r1, t1)

− 1

iℏ

[
ĵ
(0)
i (r, t) , ĵ

(0)
i1

(r1, t1)
]
∆Ai1(r1, t1)

}
− q

m
ρ̂(0)(r, t)∆Ai(r, t) ,

(18)

where ρ̂(0) and ĵ(0) are the charge and current density operators, respectively, in the non-

perturbed system. The last term in (18) originates from the non-relativistic nature of the

system and is needed to maintain the charge conservation law.

Evaluating the expectation value using the ground state and substituting (11) and (12)

leads to (1) and (2), in which the causes of the responses are the two types of electric fields

and their temporal derivatives, defined as

∆E
(ℓ)
j (0, t) ≡ ∆E

(ℓ)
j (0) cosωt , ∆E

(t)
j (0, t) ≡ ∆E

(t)
j (0) cos(ωt+ ξ) , (19)

∆Ė
(ℓ)
j (0, t) ≡ ∂

∂t
∆E

(ℓ)
j (0, t) , ∆Ė

(t)
j (0, t) ≡ ∂

∂t
∆E

(t)
j (0, t) . (20)

In the above, no magnetic response appears because it is the higher order in the LWA[16,

19]. Cho derived a Taylor series of the non-local response function[20] under the LWA, and

assigned the electric permittivity and magnetic permeability in the MCE as the term of

order O(ka)0 (the leading order) and O(ka)2, respectively, where ka ≪ 1, 2π/k is the light

wavelength, and a is the representative size of the material.

Furthermore, he pointed out that the MCE is irrational because the separability of the

electric and magnetic responses and the term of order O(ka)1 appears in a chiral symmetric

system, including a NF optical system with a low-symmetric nanostructure. The present

work is concerned with another type of irrationality, which appears in the electric response

(the leading order from the viewpoint of Cho) in NFO under a non-resonant condition.

(ii) Derivation of the expressions for susceptibilities, (3), (6) and (7).

To obtain these formulas using the two-level model, we take the expectation values of (17)
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and (18) using the ground state, φ0(r), and insert the projection operator [ the left side of

the second equation in (21)], assuming that the two orbitals are real functions, and form the

normalized orthogonal complete set:∫
d3r φm(r)φn(r) = δmn ,

∑
m

φm(r)φm(r
′) = δ3(r− r′) , (21)

where φm(r) satisfies,

Ĥ(0)φm(r) = ℏωm φm(r) , (m = 0, 1) . (22)

Having real orbitals infers even temporal parity, such that there is a null magnetic field

in the non-perturbed system or null vector potential in the non-perturbed Hamiltonian.

Furthermore, we use the well-known linear relationship between the two types of dipole

transition matrix elements,

Ci ≡
∫
d3r (∂iφ1(r)φ0(r)− φ1(r)∂iφ0(r)) =

2m

ℏ2
ℏ∆ω1 Di . (23)

Equation (23) is derived from the matrix element of the Heisenberg equation for dipole

charge density:

∂

∂t
rj ρ̂

(0)(r, t) =
1

iℏ

[
rj ρ̂

(0)(r, t) , Ĥ(0)
]
, (24)

using ρ̂(0)(r, t) = e−
Ĥ(0)t

iℏ ρ̂(0)(r, 0)e+
Ĥ(0)t

iℏ , the projection operator, (21) and (22).

(iii) Derivation of the spatial average of the susceptibilities, (9) and (10). These following

replacements in (3), (6) and (7) lead to (9) and (10):

φ0(r)φ1(r) −→ 1

V

∫
d3r φ0(r)φ1(r) = 0 , (25)

∂iφ1(r)φ0(r)− φ1(r)∂iφ0(r) −→ 1

V

∫
d3r ∂iφ1(r)φ0(r)− φ1(r)∂iφ0(r) =

1

V
Ci , (26)

φ0(r)φ0(r) −→ 1

V

∫
d3r φ0(r)φ0(r) =

1

V
. (27)

To derive (10), we additionally use the trade-off relationship between the two types of dipole

transition matrix elements,

Di Cj = δi j. (28)
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This is effective in the two-level system with well-defined parity and derived from the

quantum-mechanical commutation relationship:

[ri ,
ℏ
i
∂j] = iℏ δij , i.e., ri

(
ℏ
i
∂j · · ·

)
+

ℏ
−i
∂j (ri · · · ) = iℏδij · · · . (29)

Inserting the projection operator between ri and
ℏ
i
∂j, and eliminating the null integrals

caused by mismatched parity result in (28). From (23) and (28), Di and Ci are specified as

Di =
1

Ci
=

ℏ√
2m ℏ∆ω1

. (30)

(We do not use (30) in this paper.)
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5 Senju-Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan 

Abstract 

Mesh-electrode type and flip-chip type silicon light-emitting diodes were fabricated by using dressed 

photons. Their emission spectral profiles showed several peaks originating from phonons in a dressed-

photon–phonon, from which the existence of a photon breeding phenomenon was confirmed. The highest 

optical output power emitted from these devices was 2 W at a substrate temperature of 77 K. The highest 

optical power density from the flip-chip type was as high as eight-times that from the mesh-electrode type. 

1 Introduction 

There is a long-held belief in optical science and technology that crystalline silicon (Si) is 

not suitable for use in light-emitting devices. The reason for this is that it is an indirect-

transition type semiconductor, in which the momentum of an electron at the bottom of 

the conduction band and that of a hole at the top of the valence band are different from 

each other. Therefore, for electron–hole recombination, a phonon is required to satisfy 

the momentum conservation law. However, the probability of the electron–phonon 

interaction is low, resulting in a low interband transition probability. 

In order to realize light-emitting devices using Si, porous Si [1], a super-lattice 

structure of Si and SiO2 [2,3], Si nanoprecipitates in SiO2 [4], Er-doped Si [5], and Si-Ge 

[6] have been employed. However, in these examples, the optical output powers were very

low since the Si still worked as an indirect-transition type semiconductor. 

In contrast to these examples, the authors have previously realized novel light-

emitting diodes (LEDs), lasers, and related light-emitting and -detecting devices by using 

Si bulk crystal and dressed photons (DPs) [7]. A DP is a novel quantum field created as 

a result of the interaction between a photon and an electron–hole pair in a nanometric 

space. A dressed-photon–phonon (DDP), created as a result of the interaction between 

the DP and a phonon, has also been used [8]. The DPP was created in an Si crystal, 
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resulting in efficient light emission by the momentum exchange between a multi-mode 

coherent phonon in the DPP and an electron in the conduction band of the Si. 

In the present study, we improved on a previously fabricated infrared Si-LED 

(wavelength: 1.3 m) [9] to achieve higher current injection and more efficient heat 

dissipation. This paper reports the fabrication method and light-emission characteristics 

of the improved high-power Si-LEDs. 

 

2 Fabrication 

 

The first part of this section reviews the principles of fabrication based on a novel DPP-

assisted annealing method. The second part is devoted to the procedures for fabricating 

devices of a mesh-electrode type and a flip-chip type for allowing higher current injection 

and more efficient heat dissipation. 

 

2.1 Principles  

 

To fabricate an LED, as the first step, the surface of an n-type Si crystal is doped with 

boron (B) atoms to transform it to a p-type layer, thereby forming a pn-homojunction. As 

the second step, the crystal is annealed using a novel method named DPP-assisted 

annealing [7]. In this method, by means of current injection, the Si crystal is heated by 

Joule energy to diffuse the B atoms. During this heating, the Si crystal surface is 

irradiated with light to create DPPs at the B atoms. The electrons injected into the 

conduction band exchange momenta with the phonons in the created DPPs, thus 

recombining with positive holes and emitting light. This emission process is stimulated 

emission because it is triggered by light irradiation. The emitted light propagates outside 

the Si crystal, which means that a part of the Joule energy for heating is dissipated out 

in the form of optical energy. As a result, the diffusion rate of the B atoms decreases 

locally. By a balance between heating by the Joule energy and cooling by the optical 

energy dissipation, the spatial distribution of B atoms varies autonomously and reaches 

a stationary state.  

 Such a stationary distribution of B atoms can be the optimum distribution for 

spontaneous emission because its probability is proportional to the probability of the 

stimulated emission above. From high-resolution analysis of the B atom distribution, it 

was confirmed that two B atoms formed a pair whose length was three-times the crystal 

lattice constant of Si. It was also confirmed that the pair was oriented perpendicular to 

the propagation direction and to the polarization direction of the irradiated light [10].  
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2.2 Procedures 

 

Sb-doped n-type Si crystal was used. In order to transform its surface to an n-type layer, 

the Si crystal was doped with B atoms by a two-step ion implantation method, where the 

doping energies were 700 keV and 10 keV. 

 

2.2.1 Mesh-electrode type LED 

 

Figure 1 shows a photographic profile of the fabricated device: A homogeneously flat film 

of Cr/Al/Au (thicknesses: 30/200/300 nm) was coated on the n-type surface of the Si 

crystal described above to serve as a cathode. A mesh film of Cr/Au (thicknesses: 30/300 

nm) was coated on the p-type surface to serve as an anode. The crystal was diced to form 

devices with areal sizes of 1 mm 1 mm, and these devices were bonded on a PCB 

substrate made of high-thermal-conductivity AlN. The diameters of eight electric wires 

were increased from the previously employed 25 m [9] to 45 m to avoid damage to the 

electric wires and electrodes during high current injection. 

 

Fig. 1 Photographic profile of the fabricated mesh-electrode type LED. 

 

The conditions for the DPP-assisted annealing were: (1) A substrate temperature, 

of 285 K; (2) irradiation light with a wavelength of 1342 nm and a power of 2.0 W; (3) 

injected current having a triangular waveform (50 s period) and a peak current of 1.3 A 

(current density 1.3 A/mm2); and (4) an annealing time of 2 hours. 

Figure 2 shows the relation between the applied voltage and injected current in 

the fabricated Si-LED. A drastic decrease in the electrical resistance can be seen after 

the DPP-assisted annealing, which is evidence of successful annealing. 

 

2.2.2 Flip-chip type LED 

 

To achieve higher injected current density than that of the mesh-electrode type, a flip-

chip type LED was fabricated. First, its areal size was decreased. Second, a larger-

diameter electric wire was used. Third, the flip-chip structure was employed, in which 
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the p-type layer was contacted to the PCB substrate for efficient heat dissipation.  

 

Fig. 2 Relation between the applied voltage and injected current. 

Broken and solid curves are the results acquired before and after the DPP-assisted annealing, respectively. 

 

 Figure 3 shows a photographic profile of the fabricated device: A homogeneously 

flat film of Cr/Au/Ti/Pt/Au (thicknesses: 3/300/100/300/500 nm) was coated on the p-type 

surface of the Si crystal to serve as an anode. A patterned film of Cr/Au (thicknesses: 

10/500 nm) was coated on the n-type surface as a cathode. The crystal was diced to form 

devices with areal sizes of 0.35 mm0.35 mm, which was smaller than that of the mesh-

electrode type described in Subsection 2.2.1. This is equivalent to the size of commercially 

available devices made by using a conventional direct-transition type semiconductor. The 

diced device was bonded on a PCB substrate made of AlN. A single electric wire with a 

diameter as large as 60 m was used to realize high-density current injection without 

any electrical damage.  

 

Fig. 3 Photographic profile of the fabricated flip-chip type LED. 

 

The conditions for the DPP-assisted annealing were: (1) A substrate temperature 

of 289 K; (2) irradiation light with a wavelength of 1342 nm and a power of 0.24 W (areal 

power density: 1.9 W/mm2); (3) injected current with a triangular waveform (10 s period) 
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and a peak current of 0.16 A (current density: 1.3 A/mm2); and (4) an annealing time of 

7.2 hours. 

 

3 Light emission characteristics 

 

With conventional current injection, the fabricated device worked as a Si-LED: The 

electrons injected into the conduction band exchanged momenta with phonons even 

though the probability of this exchange was extremely low. As a result, they recombined 

with a positive hole, resulting in spontaneous light emission. Since this light created 

DPPs at the B atoms, phonons in the DPP could exchange momenta with other electrons, 

resulting in further light emission. By repeating this process, the emitted light intensity 

increased and reached a stationary state to establish steady LED operation. 

 

3.1 Mesh-electrode type LED 

 

 

Fig. 4 Spectral profile of the emitted light at substrate temperature of 77 K. 

 

Figure 4 shows the spectral profile of the emitted light, which was acquired by cooling 

the substrate to 77 K and injecting a current of 2.0 A. In this figure, gE  represents the 

bandgap energy of the Si crystal at 77 K. This figure shows that the spectral profile has 

several peaks at g phononE nE , where n  is an integer and phononE  is the phonon energy. 
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The spectral peak at 3g phononE E  corresponds to the photon energy of the light irradiated 

during the DPP-assisted annealing [10]. This correspondence has been named photon 

breeding [11], which originates from the autonomous formation of pairs of B atoms by 

DPP-assisted annealing, as was described in Subsection 2.1. Three phonons contribute 

to the light emission at 3g phononE E , because the length of the B atom pair is three-times 

the crystal lattice constant of Si. This figure also shows the higher harmonics of the 

phonon contributions, i.e., 6g phononE E  and 9g phononE E .  

Figure 5 shows relations between the injected current ( I ) and the optical output 

power ( P ) of the upward-emitted light from the upper surface of the Si-LED, which were 

acquired at several substrate temperatures. It shows that P  is proportional to 
2I  in 

the lower current region, whereas it is proportional to 
4I  in the higher current region. 

The origin of the 
2I -relation has been identified as Auger scattering [9]. The 

4I -relation 

originated in amplification by the stimulated emission.  

 

Fig. 5 Relations between the injection current and the optical output power. 

Substrate temperatures were 77 K (A), 273 K (B), 290 K (C), and 293 K (D). 

 

By defining the current at the boundary between the region of the 
2I - and 

4I -

relations as the threshold 
thI , it is found that its value was lower at lower substrate 

temperatures. For example, it was 580 mA at 77 K. This means that the threshold current 

density was 0.58 A/mm2, which is close to the threshold current density (0.20–0.35 
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A/mm2) of the Si-laser fabricated by the DPP-assisted annealing [12]．The highest optical 

output power in Fig. 5 was 2 W with an injection current of 2 A and a substrate 

temperature of 77 K. This value is as high as 103-times that of a commercially available 

LED*.  

The image A in Fig.6 shows the photograph of the light spot emitted from the 

presently fabricated Si-LED. The image B is from the commercially available LED above*. 

By comparing these images, a very high optical output power of the present Si-LED can 

be recognized. 

 

Fig. 6 Photographs of light spots. 

A and B are the spots emitted from the Si-LED fabricated in the present study and from a commercially 

available LED, respectively. 

 

*For example, the optical output power of a Hamamatsu Photonics model L12509-0155K, which is made 

of a direct-transition type semiconductor (InGaAs), is 2 mW. The peak emission wavelength is 1.55 m.  

 

3.2 Flip-chip type LED 

 

Figure 7(a) shows the spectral profile of the light emitted from the flip-chip type LED, 

which was acquired by cooling the substrate to 77 K and by injecting a current of 3.21 A. 

Figure 7(b) shows the profile at a substrate temperature of 283 K and an injection current 

of 2.45 A. These figures also clearly demonstrate spectral peaks at 3g phononE E , 

6g phononE E , and 9g phononE E , as was the case in Fig. 4.  

Figure 8 shows relations between I  and P  of the upward-emitted light from 

the upper surface of the Si-LED, which were acquired at several substrate temperatures. 

The highest optical output power in this figure was as high as 2 W at 3 A-injection current 
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and at a 77 K-substrate temperature. This demonstrates an extremely high optical 

output power density was achieved, as high as eight-times that of the mesh-electrode 

type LED described in Subsection 3.1. 

 

Fig. 7 Spectral profile of the light emitted from the flip-chip type LED. 

(a),(b) The substrate temperatures were 77 K and 283 K, respectively. 

 

 It can be seen that the relations between I  and P  showed more complicated 

profiles than those in Fig. 5: In the low-current region [a], P  increased slowly with 

increasing I , whereas it increased rapidly in the high-current region [c]. The unique 

feature is that P  decreased with increasing I  in the intermediate region [b]. Figures 
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9(a)-(c) show photographs of the upward-emitted light spots in the regions [a]-[c], 

respectively. Among them, Fig. 9(b) shows that the light was emitted not only in the 

upward direction but also in the side direction of the device. This side-emission was 

attributed to the decrease in the acquired value of P  in region [b]. It should be noted 

that this side-emission was due to stimulated emission, which suggests the possibility of 

super-luminescent diode and laser operation. 

 

Fig.8 Relations between the injection current and the optical output power of the upward-emitted light 

from the surface of the Si-LED.  

Substrate temperatures were 77 K (A), 195 K (B), 255 K (C), and 283 K (D). 

 

 

Fig.9 Photographs of the upward-emitted light spots. 

(a), (b), (c) are images obtained in regions [a], [b], and [c] in Fig. 8, respectively. 

 

As was the case in Fig. 5, the threshold 
thI  can be defined as the current at the 

boundary between regions [b] and [c]. Figure 10 shows its dependence on the substrate 

temperature T . The solid line, fitted to the experimental results of the closed circles, 

was expressed as  0 0exp /thI I T T . The characteristic temperature 0T  in this 
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expression was 63 K, which corresponded to the energy 3 phononE  of three phonons in the 

DPP. This means that the electron–hole pair was confined in the potential well formed 

by three phonons. This value of 
0T  was as high as that of a conventional laser fabricated 

by a direct-transition type semiconductor (InGaAsP), lasing at a wavelength of 1.3 m 

[13], which suggests that future progress in the present study can realize highly reliable 

light-emitting devices using crystalline Si. 

 

 
Fig. 10 Relation between the substrate temperature and the threshold current. 

 

4 Summary 

 

Mesh-electrode type and flip-chip type Si-LEDs were fabricated to realize higher-density 

current injection and more efficient heat dissipation. Their emission spectral profiles 

showed several peaks that originated from phonons in the DPP, by which a photon 

breeding phenomenon was confirmed. Their highest optical output powers were 2 W at 

injection currents of 2 A and 3 A, respectively, and a substrate temperature of 77 K. The 

highest optical power density from the flip-chip type was as high as eight-times that from 

the mesh-electrode type. In the case of the flip-chip type, the characteristic temperature 

of the threshold current for the rapid increase in the optical output power was 65 K, 

which corresponded to the energy of three phonons in the DPP.  
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Abstract 

By noting that the dressed photon (DP) is a quantum field whose energy–momentum relation deviates 

from the mass-shell, novel theoretical studies of so-called off-shell science have been launched. This 

article reviews recent progress in these studies. After reviewing the characteristics of the DP as an off-

shell quantum field, theories having a physical basis are introduced. These theories are an electromagnetic 

response theory and a theory based on spatio-temporal vortex hydrodynamics. Next, theories having a 

mathematical basis are introduced, and these can serve as helpful tools for gaining a deep understanding 

of the concepts of the physics-based theories above. These theories are a quantum probability theory and 

a quantum walk model. As a further helpful tool, a quantum measurement theory is introduced. A theory 

based on micro–macro duality is demonstrated, which serves as the foundation to embark on a stuy of 

off-shell science. Correlations among the theories reviewed here are also shown. 

 

1 Introduction 

 

Studies on dressed photons (DPs) have found that the DP is a quantum field created by 

light–matter interaction in a nanometric space [1]. Some of its unique characteristics, 

outline below, have been demonstrated by experimental studies*: 

[a] The DP is a field composed of photons and electrons (or excitons). It is created and 

localized at the boundary or at the singular point of a nanometric material, i.e., on the 

material surface or at an impurity atom in the material. 

[b] The energy and momentum of the DP range widely. 

[c] The DP is a quantum field off the mass-shell (“off-shell quantum field” for short). 

[d] Electrons and excitons can be excited and de-excited by the DP even under non-

resonant condition. 

[e] The DP energy is exchanged and transferred between nano-materials when they are 
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located in the close proximity to each other.  

[f] The DP field is disturbed when it is measured by inserting a probe into the field.  

[g] The DP is transferred in an autonomous manner between the nano-materials. 

[h] The spatial distribution of DPs on a material surface has a hierarchical structure. 

 Characteristics [a]–[h] above have been applied to the invention of novel optical 

logic gate devices, nano-fabrication technology, and energy conversion technology [2]. 

They have also been applied to the invention of novel high-power lasers and light-

emitting diodes using crystalline Si, even though Si is an indirect-transition-type 

semiconductor [3]. These applications demonstrate the advent of a revolutionary generic 

technology that could never have been realized as long as conventional light (free 

photons) is used (Fig.1) [4]. 

 

Fig.1 Generic technology that has emerged by applying the unique characteristics of the DP [4]. 

 

 The advent of this technology suggests that the study of the DP has entered a 

new era in which the construction of advanced theories will be indispensable for 

accelerating technological progress. 

 

(*) Characteristic [a] can be considered as the origin of characteristics [b] and [e]. Furthermore, 

characteristic [b] can be considered as the origin of characteristics [c] and [d], and characteristic [e] that 

of characteristic [f]. 
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2 The dressed photon as an off-shell quantum field 

 

Characteristics [a]–[h] in Section 1 cannot be described by conventional optical theories. 

This is because these theories have treated only a photon in vacuum (free photon) and 

in a macroscopic material, whose dispersion relation is on the mass-shell (“on-shell”, 

for short). It has been popularly known that massless particles with non-zero spin, such 

as free photons, cannot be localized in space, in the sense that the position operator 

cannot be well-defined [5, 6]. However, it turns out to be natural to consider localized 

photons when the effective mass of photons, created by the light–matter interactions, is 

taken into account. Especially in the case of nano-materials, space–time localization and 

energy–momentum fluctuation provide brand new aspects of light. A photon in such a 

context is called a DP [1]. 

For a theoretical definition of the DP, the “off-shell” nature of the interaction 

has to be considered. That is, the DP is an off-shell quantum field that conspicuously 

deviates from the mass-shell in the dispersion relation (Fig. 2). As has been well known, 

quantum field theories cannot be formulated without off-shell entities. In other words, 

the traditional particle description has failed to treat the composite system of quantum 

fields. Hence, DPs must be entities that are very different from Einstein’s quanta of light, 

or free photons.  

 

Fig.2 The dispersion relation of the electromagnetic field on-shell or off-shell. 

E t p x k  ,  ,  ,  ,  , and   are energy, time, momentum, position, wave-number, and wavelength, 

h 2respectively.  is Planck ‘s constant  divided by . 

 

Here, a fundamental question arises: How can the DP be described as an 

individual entity? As long as one sticks to the notion of individual entities as irreducible 

on-shell particles, it is impossible to treat the DP as an individual entity. However, a 
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more general perspective, advocated by Ojima [7], has shown that macroscopic physical 

phenomena can emerge out of a condensation of microscopic off-shell entities.  

By following this perspective, a basic idea can be proposed: In the interaction 

between light and a nano-material, certain families of modes of the composite system 

will behave as individuals. This behavior suggests that the DP is the quantum field of a 

composite system in which an electromagnetic field and an electron (or an exciton) 

interact in a nanometric space. Furthermore, it is a virtual field localized in a nanometric 

space within a short time duration. Thus, the DP is a quantum field whose nature is 

incompatible with that of an on-shell photon. This means that conventional optical 

theories are incapable of giving a systematic description of characteristics [a]–[h] above. 

Fortunately, however, as will be reviewed in Sections 3 and 4, novel theoretical studies 

have been commenced in order to draw a precise theoretical picture of the DP to provide 

a systematic description of these characteristics.  

Several hints have been found to construct such novel theories by noting that 

the virtual photon plays an essential role in the electromagnetic Coulomb interactions. 

They are:  

[A] The longitudinal mode of an electromagnetic field (the longitudinal wave) 

contributes to the Coulomb interaction [8].  

[B] The field interaction accompanies the 4-momentum [9]. 

[C] The spacelike field is not spatially localized because it behaves as a stable wave. 

However, it becomes unstable and can localize if it interacts with a timelike field [10]. 

 By referring to these hints, novel theoretical studies relying on physical as well 

as mathematical bases have commenced [11]. 

 

3 Theories having a physical basis 

 

This section reviews two examples of novel theories constructed on a physical basis. 

One is a response theory based on classical electromagnetics. The other is a theory based 

on spatio-temporal vortex hydrodynamics, supported by relativity theory.  

 

3.1 Electromagnetic response theory 

 

A novel response theory was constructed using an electromagnetic response function. 

As shown by Fig. 3, a nano-particle 1 (NP1) serves as a light source. It corresponds to a 

fiber probe that creates a DP on its tip. A nano-particle 2 (NP2) is illuminated by the 

light emitted from NP1. Since NP2 is placed in close proximity to NP1 in the case of 
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d  d Fig. 3(a) ( :  is the separation between NP1 and NP2, and is the wavelength 

of the light), the electron in NP2 responds not only to the transverse electric field 
( )trans

E
( )lon

E( ) of the light but also to its longitudinal electric field ( ).  

 

Fig.3 Schematic explanation of the theoretical model. 

(a) Near-field condition. (b) Far-field condition. 

 
( )trans

E The field  is created by a transverse current in NP1. It is a radiative field 

that follows the Ampère-Maxwell law. It has been popularly known that conventional 

optical phenomena occur and are observed by this field even under far-field condition 

d  ( )lon
E( : Fig.3(b)). On the other hand,  is a non-radiative field, which is created 

by an electric charge in NP1 and follows Coulomb’s law. It causes unique optical 

d phenomena to occur only under the near-field condition ( : (Fig.3(a)). 

 The Schrödinger equation was used to describe the electronic state in NP2 under 

 Alight illumination, for which both the scalar ( ) and vector ( ) potentials, originated 

( )lon
E

( )trans
Erespectively from   and  , were adopted to represent the light–matter  

 Ainteraction. The potentials   and   appeared with the linear and quadratic forms, 

respectively, in the relevant equations. The difference in their forms originated from the 

non-relativistic nature of the system under study.  

 For describing the phenomena that originated from the DP, the present theory 

 Atreats  equivalently with . It should be noted here that the conventional response 

theories have eliminated  by transforming it to the two-body Coulomb interaction 

A potential. Being different from them, the present theory treats not only  but also  

as the “cause” of the response. For this treatment, a semiclassical response theory was 

constructed to derive the electric charge density and the electric current density, induced 

as the “response” of the electron in NP2. For representing the response, the single 

susceptibility was calculated by a method based on density functional theory.  
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 From the time-integral of the commutator in the expressions for the electric 

charge and current densities in the NP2 (eqs. (6.17) and (6.18) in ref. [12], respectively), 

variables representing the energies appeared in the denominators of the derived fractions. 

These fractions denote the resonance phenomena because they diverge to infinity by 

tuning the photon energy. However, eq. (6.18) in ref. [12] also has non-resonant fractions 

 Athat originated from the non-relativistic nature of the system. Since   and   are 

( )lon
E

( )trans
Erespectively represented by  and , the susceptibility can be derived from 

the proportional constants between the induced electric charge density (current density) 
( )lon

E
( )trans

Eand  ( ). 

 In the case of the electric dipole-allowed transition between the two-energy 

levels of the electron, the cause of the response can be attributed to the total electric field 
( ) ( ) ( )( )total lon trans= +E E E  when the system is under the far-field and resonant conditions. 

( )total
EThat is, the cause can be represented by  and the electric permittivity. However, 

in the case of phenomena that originated from the DP, especially the one that occurred 
( )total

Eunder the non-resonant condition, it should be noted that  cannot serve as the 

cause of the response. This means that neither the constitutive equation using electric 

permittivity and magnetic permeability nor numerical simulation using the finite-domain 

and time-domain (FDTD) method are valid.  

 In the case of the electric dipole-forbidden transition, on the other hand, only 

the non-resonant term contributes. It was confirmed that this term led to an equation that 

is equivalent to the London constitutive equation for the Meissner effect. Thus, in this 

Acase,  serves as the cause of the response.  

NP2 was assumed to be a nonmetallic material in the present theoretical study, 

and this has also been employed in a series of experimental studies on the DP [2,3]. A 

metallic material was not employed here because it is unsuitable for creating the DP. 

This is because the temporal coherence of the incident electromagnetic field is lost 

within a very short time due to the very short transverse relaxation time of an electron 

in the metal.  

 The constructed theory successfully described the excitation and de-excitation 

of electrons or excitons, the contribution of phonons, and the magnetic interactions 

found in experimental studies of the DP under the non-resonant condition of light–matter 
( )lon

Einteraction. The main derived result is that:  caused a large electronic response. 

Furthermore, the non-resonant term of the electric susceptibility was much larger than 

the resonant term [12], which explains characteristics [d] and [e].  
( )total

E As is understood from the discussions above,   failed to describe the 

response of NP2 in the case where the conditions of non-resonance and near-field 
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illumination/measurement are simultaneously met. This failure was never found in 

Aprevious studies on the DP because only  was employed as the cause. The present 

theory succeeded in specifying that  is indispensable for describing the bound state 

of the electron for which the quantum many-electron effect (i.e., an exchange/correlation 

interaction) was taken into account.  

In future studies, more advanced response theories are expected to 

systematically explain characteristic [e].  

 

3.2 Theory based on spatio-temporal vortex hydrodynamics 

 

E cp E c pCharacteristic [b] suggests that the inequality   holds (  ,  , and   are the 

energy, speed, and momentum of an electromagnetic field, respectively), which means 

that the field can exist in the spacelike domain of the Minkowski space. In addition, [B] 

in Section 2 suggests that a timelike-support and spacelike-support of the 4-momenta 

are required to describe the interacting fields. By referring to these suggestions and also 

to [C] in Section 2, it can be conjectured that the DP can be created by the interaction 

between the fields in the timelike and the spacelike domains. 

Prompted by this conjecture, a novel theory has been constructed by focusing 

on the similarity in formulation between vortex hydrodynamics and electromagnetics 

[13]. For this construction, it was also noted that the contribution of the spacelike 

momenta was indispensable for the interaction between the quantum fields to occur [9]. 

Conventional classical theories have claimed that the Coulomb mode played a 

principal role in the electromagnetic interaction and that the longitudinal wave was a 

physically existing mode [8, 14-16] (refer also to [A] in Section 2)*. In contrast, 

conventional theories of quantum electrodynamics have excluded the longitudinal wave 

as a “non-physical mode” even though it had a close relation with the Coulomb mode. 

Instead, they have introduced the exchange of virtual photons into the theoretical model 

for describing the electromagnetic interaction. This contrast suggests that a rift exists 

between the classical and quantum explanations above. This problem should be solved 

to draw a consistent physical picture of the DP that exists in an intermediate area between 

the classical and quantum worlds.  

 

(*) This claim is consistent with the discussions in Section 3.1, where it was pointed out that the 

( )lon
E longitudinal electric field  (and also ) plays an essential role in the phenomena that originated 

from the DP. 
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It should be pointed out that the theory of micro-macro duality (Subsection 4.2 

(2)) has already explained how to connect the classical and quantum worlds, by which a 

clue to solve the problem above can be found. The principal advantage of this theory is 

the capability of analyzing versatile structures of quantum fields with infinite degrees of 

freedom. This theory has demonstrated that the two worlds above coexist in the sense 

that the classical–quantum correspondence is mathematically guaranteed. The main 

purpose of the present subsection is to describe the electromagnetic interaction by 

adopting the micro–macro duality theory. It is expected that this description can 

systematically demonstrate the contributions of the longitudinal wave and the spacelike 

4-momenta for drawing a physical picture of the DP.  

For this demonstration, a novel mathematical expression, called the Clebsch 

representation, is adopted for the 4-vector potential of the electromagnetic field. The 

Clebsch representation is a method involving the use of Clebsch variables for 

vrepresenting the velocity vector field  that is introduced to analyze the Hamiltonian 

of a barotropic fluid. It should be noted here that the mathematical structure (eq. (1a)) 

Aof the 4-vector potential  of the skew-symmetric electromagnetic field is similar to 

that of the equation of motion (eq. 1(b)) for a barotropic fluid based on relativity theory: 

0F 

  = ,       (1a) 

0v = ,       (1b) 

F where  denotes the skew-symmetric transverse electromagnetic field, and  is 

vthe skew-symmetric vorticity defined by the rotation of the velocity field  . This 

( )A

 = similarity is due to the fact that the scalar field  satisfies the wave equation 

and its gradient vector  is parallel to the propagation direction of the wave (normal 

to the electric and magnetic fields). 

  U  = Next, using the two-variable (  and ) Clebsch representation ( ), 

vthe  in eq. (1b) is regarded as the vector potential of the electromagnetic field. Here, 

U    denotes the Clebsch parameterized 4-vector potential that is parallel to the 4-

Poynting vector. Since   in eq. (1b) can also be regarded as denoting the 
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electromagnetic field, it is represented by the skew-symmetric field 

S U U    =  − .      (2) 

Furthermore, the following two equations are derived, whose mathematical structure is 

similar to that of the Maxwell equation: 

2

0  

    − = ,      (3a) 

0

   = .       (3b) 

Here, eqs. 3(a) and (b) indicate that  follows a spatial Klein-Gordon (KG) equation, 

 and that the two vectors ( and ) are normal to each other, respectively. Using 

Uthe vector , these equations can be rewritten as  

2

0U U  

   − = .      (4) 

U The field, represented by , can be called the Clebsch dual (CD) field by comparison 

A
with  that satisfies the Proca equation 

2

0A A  

   + = .      (5) 

T

 S  The energy-momentum tensor  for  is expressed as 

T S S C C  

  = − = ,      (6) 



   − where   denotes a spacelike vector, being proportional to the spacelike 

C  momentum.  represents a longitudinal wave. The middle part of eq. (6) has 

the same form as that of the conventional electromagnetic field. The right-hand side is 

 C C

given by the product of  and , which shows that the Clebsch representation 

succeeded in including two essential elements (the spacelike momentum and the 

longitudinal wave) in the equations.  

U Although  was a null vector in the discussion above, it can be extended to 
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T

the spacelike domain so that  can be represented by 

T S S S S g   

   = − + .     (7) 

The mathematical form of the right-hand side is equivalent to the curvature term in the 

Einstein equation. It should be pointed out that this equivalency was derived by breaking 

the U(1) gauge symmetry for extending the CD field to the spacelike domain. Equation 

(7) is acceptable because the CD field plays the role of the basic mode to represent the 

spacelike 4-momenta of the interacting fields and because the inherent feature of the 

relativistic field is represented by its space-time structure.  

In order to apply the concept of the CD field above to draw the physical picture 

of the DP, several points should be noted: The spatially homogeneous spacelike 

momentum field becomes unstable if it interacts with the timelike momentum field, as 

was shown in [C] of Section 2. By such an interaction, the timelike and spacelike 

momentum fields can be transformed between each other, and, as a result, the spatial 

structures of the fields are significantly deformed. Although such a transformation 

occurs throughout the whole of the interacting area, it occurs more conspicuously at a 

singular point of the material, such as at the surface of the material or at the impurity 

atoms in the material (characteristic [a]).  

Several discussions were made to describe this transformation: When the 

timelike momentum vector satisfies the timelike KG equation, its solution takes the form 

of a homogeneous wave. Such a homogeneous wavy solution can be also derived from 

the spacelike KG equation satisfied by the spacelike momentum vector. Since the 

constants in the KG equation represent the physical quantities of the material under study, 

the transformation between the timelike and spacelike vectors can be expressed by 

reversing the signs of these constants. 

The information derived by these discussions is:  

1) The complex-conjugate amplitudes 

† 0

0 'exprS R x
c c

  
=  

 

0

0 'exprS R x
c c

  
= − − 

 
,    (8)   

†â âof the derived CD field correspond to the creation ( ) and annihilation ( ) operators 

of the quantum harmonic oscillator, respectively. Here,  is the angular frequency. 

'R  is the radial component of the solution of the KG equation. This correspondence 

enabled the definition of the normal mode of the electromagnetic field in a sub-

wavelength-sized field, which had been impossible with the previous theory [17].  
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C2) The CD field represents a longitudinal wave (the complex-conjugate amplitudes  

*C
L = 

*Land ) that is accompanied by the components ( ( ) and ) satisfying the 

KG equation in the spacelike domain (Fig. 4). 

 

 

C
*CFig.4 Directions of the amplitudes of the longitudinal wave (   and  ) and those of the 

L
*Laccompanying components (  and ).  

1x  represents the propagation direction of the electromagnetic wave. 

 

L
*L3) The components (  and ) become temporally unstable due to the interaction with 

the field in the timelike domain. As a result, they are created or annihilated within a very 

short duration, which means that the CD field corresponds to a virtual photon. 

4) The transverse wave of the CD field is converted to a longitudinal wave at the material 

surface. This means that the material surface serves as the source of a longitudinal wave, 

thus successfully describing characteristic [a]. 

5) The spatial profile of the field is described by a Yukawa-type function, which can be 

0x 0rS 1x 2x 3xunderstood by replacing   in   of eq.(8) by  ,  , or  . As a result, 

characteristic [a] was also described. This means that the DP is a localized quantum field, 

created as a result of the transformation of the spacelike momentum field to the timelike 

field at a singular point of the material.  

6) The DP can be represented by the superposition of the longitudinal waves of the CD 

field. This representation is possible because these waves behave as normal modes. It 
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L
*Lshould be pointed out that the virtual photon behavior of the components (  and ), 

accompanying this longitudinal wave, is nothing less than the origin of this successful 

representation.  

 These findings 1) – 6) were derived by adopting the longitudinal wave in the 

present theory as a physical mode. Future progress is expected to explain characteristics 

[g] and [h], and also to establish the theory of the fully quantum optical version. 

 

4 Theories having a mathematical basis 

 

It is expected that mathematics-based theories will serve as invaluable guides for gaining 

a deep understanding of the concepts of the physics-based theories for the phenomena 

that originate from the DP. Examples of these theories are the quantum probability theory 

and the quantum measurement theory, which are reviewed in this section. Also 

demonstrated is a theory based on micro–macro duality, which serves as a foundation 

for embarking on theoretical studies of off-shell science. 

 

4.1 Quantum probability theory 

 

Quantum probability theory has been constructed by noting characteristic [b] above [18]. 

This theory focuses on the families of the higher and lower energy–momentum modes 

for investigating phenomena that cannot be analyzed by conventional on-shell theories. 

The family of higher modes of the composite system is created as a result of light–matter 

interaction and behaves like an individual entity. This entity can be defined as the DP. 

The family of lower modes serves as a kind of heat-bath.  

Since no a priori strict boundary between the higher and lower modes exists, it 

is required to investigate the asymptotic behavior of modes where the energy–

momentum becomes large. In other words, the core of a mathematical theory for the DP 

is nothing but a kind of quantum-classical correspondence for describing an asymptotic 

state that appears as its quantum number increases to infinity. Hence, some general 

frameworks are required for both quantum/micro and classical/macro systems. 

Fortunately, a mathematical theory that meets this requirement has been constructed, 

that is, the quantum probability theory. The intermediate realm, appearing between the 

micro- and the macro-systems, has been successfully described by this theory. 

As has been popularly known, a quantum harmonic oscillator with a large 

quantum number behaves very much like a classical harmonic oscillator. The composite 
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system created by light–matter interaction is considered to be a typical example of such 

a quantum harmonic oscillator. This consideration and the definition of the DP above 

lead to the fact that the time averaged distribution of the position of the DP can be 

governed by an arcsine law. Note that each mode of the DP gains an effective mass by 

the interaction between the light and nano-material, and thus, it is not paradoxical to 

consider the position of the DP. Moreover, since the size of the nano-material is much 

less than the wavelength of light, the variance of the distribution will be determined by 

this size. The stronger the interaction, the higher the energy at a suitable boundary 

between the family of the higher mode (DP) and that of the lower mode (heat bath). 

Hence, it is expected that the arcsine law will represent a sufficiently accurate 

distribution of the DP when the interaction is sufficiently strong. 

Since the arcsine function has a twin-peaked profile, the probability of finding 

the DP will be the highest at the singular point, which is the reason why localization of 

the DP occurs at the boundary. This localization feature is quite consistent with the 

experimental results acquired so far [19]. 

 Here, let us take as the most fundamental example the localization of the DP in 

a fiber probe [20]. The three-dimensional density of the DP can be expressed by an 

arcsine function  

( )
( ) 2

1

2
f x C

S x x
=

−
,      (9)  

C ( )S xwhere   and  respectively denote the normalization constant and the cross-

sectional area of the fiber probe on which the DP is created. The localization of the DP 

at the tip of the fiber probe, and furthermore, at the position of the impurity atoms in the 

material were successfully described based on the twin-peaked spatial feature (peaks at 

2x =   in eq. (9)) [18].  

In conjunction with the quantum probability theory above, a quantum walk 

model was used to mathematically describe characteristics [a], [g], and [h]. It was also 

used to analyze the dynamic behavior of the composite system created as a result of the 

interaction between multiple quantum fields. Furthermore, it was aimed at exploring the 

master equation for describing the dynamics of the DP by noting that their behaviors are 

similar to those of the quantum walk. It has been experimentally confirmed that these 

behaviors exhibited inherent characteristics that corresponded to those of the quantum 

walk [21]: The temporal behavior of the DP energy transfer between the two NPs in Fig. 
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( )exp /t −3(a) was least-squares fitted to an exponentially decaying function , where 

t  and  represent time and the time constant of the phenomena, respectively. This 

exponential decay corresponds to the quantum walk dynamics*. 

 

( )exp /t −(*) The temporal behavior of the random walk is represented by , which exhibits slower 

decay than that of the quantum walk. 

 

By referring to the arcsine law derived by the quantum probability theory, 

numerical simulations were carried out to analyze the creation of the DP and its energy 

transfer in a fiber probe-to-fiber probe system. As is schematically explained by Fig. 

5(a), two fiber probes served as a sender and a receiver of the DP energy under collective 

excitation by conventional propagating light.  

Two assumptions were made for this analysis. They were: (a1) The sender fiber 

probe was coherently excited by the incident light. (a2) The created DP hopped from 

one atom to an adjacent atom in a coherent manner, which corresponded to the quantum 

walk process. The analysis described three energy dissipation phenomena caused by the 

energy conversion from the DP to the conventional propagating light: (d1) The 

conversion to a conventional electromagnetic field to be guided backward to the main 

body of the sender fiber probe. (d2) The conversion to a conventional electromagnetic 

field to be guided forward to the main body of the receiver fiber probe. (d3) The 

conversion to a conventional electromagnetic field that propagates out from the tapered 

part of the fiber probe to the outer free space. As a result, it was confirmed that, among 

all of the created DPs, the one created by the pair of anti-parallel electric dipoles was 

localized at the tip of the fiber probe without being dissipated through phenomena (d1) 

– (d3).  

Figures 5(b) and (c) show the calculated results for the single-tapered and 

double-tapered fiber probes, respectively [22]. They demonstrate that the double-tapered 

fiber probe concentrated the DP energy at its tip more efficiently than that at the single-

tapered one. This suggests that the double-tapered fiber probe is more advantageous for 

creating/measuring the DP with higher efficiency, which is consistent with the 

experimental results [23]. 

Future developments in this study are expected to explain also characteristics 

[a], [g], and [h].  

 



15 

 

 

Fig.5 Simulation by a quantum walk model. 

(a) The fiber probe-to-fiber probe system. (a1) and (a2) represent the two assumptions. (d1)-(d3) are the 

energy dissipation phenomena. (b) and (c) represent the calculated results for single-tapered and double-

tapered fiber probes, respectively. The photos show scanning electron microscopic images of these fiber 

probes.  

 

4.2 Other basic theories having a mathematical basis 

 

(1) Quantum measurement theory: A theoretical description of characteristic [f] is 

essential for understanding the process of measuring the DP. Here, the problem is how 

to describe the dynamics of the DP energy transfer that occurs during the measurement. 

To solve this problem, quantum measurement theory, a branch of algebraic quantum 

theory, is under construction based on the theory of operator algebra, especially, C*-
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algebra. C*-algebraic quantum theory is advantageous because it can explicitly describe 

macroscopic classical levels of quantum systems. 

Mathematical issues for constructing the algebraic quantum measurement 

theory for the DP have been surveyed [24, 25]. They are:  

1) Two methods are possible. Their mathematical issues are: [For the top-down method] 

After the mathematical model is built based on the universal gauge principle of quantum 

electrodynamics, several approximations should be made depending on the scale of the 

system or the properties of the material fields. [For the bottom-up method] This method 

is advantageous to build a mathematical model for describing the properties of the 

energy–momentum and the properties of localization of the DP. This model should be 

built by considering the ability to extend and scale it. 

2) Mathematical modeling should start from the space-time area O in which nano-

materials are provided. Here, a sub-space of the real space can work as the area O. Next, 

an algebra A(O), composed of physical quantities in the area O, is considered. Then, the 

ttemporal evolution O A(O) is considered for each area O. Microscopic physical 

quantities, representing the boundary conditions (the lattice defects, as an example), can 

tbe included in O. For this consideration, the measurement process can be represented 

by the inclusion relation O   O2, where O2 represents the space-time domain under 

study. Finally, the measurement theory is expected to be established by the algebra A(O2). 

 

(2) Theory based on micro–macro duality: Based on an algebraic quantum field theory, 

micro–macro duality theory has been constructed as a powerful mathematical guide for 

analyzing the nature of the DP [26]: Symmetry breaking in the algebra in a microscopic 

area can produce multiple sector spaces. Some physical quantities in these sector spaces 

satisfy the commutativity requirement, and the quantity named the center can be used to 

classify the sector spaces. That is, a commutative observable classical system and a non-

commutative quantum system can coexist in each sector space, and this provides the 

basic structure for quantum-classical correspondence. 

 The sector space can be interpreted also as a mathematically symmetric space. 

It has been found through this interpretation that the automorphic form plays an essential 

role. Several discussions were made by taking a fiber probe as a test system: In order to 

construct a consistent theory for describing the DP, it will be a crucial breakthrough to 

faithfully reproduce its proper dynamic functions. This reproduction forms the micro–

macro boundary level described by a symmetric space arising from a broken symmetry, 
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which is possible by projecting the s-channel structure at the invisible micro-level to the 

spacelike t-channel. If suitable automorphic forms defined on this symmetric space are 

successfully identified, it will become possible to describe any of non-trivial dynamic 

phenomena caused by the DP. In particular, the automorphic factor appearing in the 

definition of an automorphic form will play an important role as a cocycle carrying the 

dynamic properties of the invisible micro-level. In the context of the DP, this will 

perhaps justify an analogy with the dynamic behavior played by the Regge trajectories, 

which carry spacelike momenta in the hadronic scattering processes originating from the 

dual resonance structure. 

 As is shown by Fig. 6, the theory based on micro–macro duality serves as a 

foundation of the theories reviewed in this article. This figure also summarizes the 

principal characteristics of the DP, the developed theories, their physical and/or 

mathematical methods, and information derived by these theories. The red double-

pointed arrows indicate the topics commonly described by the multiple theories. By 

noting these arrows, correlations between the theoretical studies can be clearly 

recognized. Successful construction of off-shell science, guided by systematic studies 

on the DP, is expected by analyzing these correlations. It is also expected that the micro–

macro duality theory will serve as a guide to this development. 

 

 

Fig.6 The principal characteristics of the DP, developed theories, their physical and/or mathematical 

methods, and information from the theoretical studies described in Sections 3 and 4.  

Red double-pointed arrows indicate the topics common to the adjacent theories. 

 

5. Summary 

 

This article reviewed recent progress in the theoretical studies toward the development 

of off-shell science. First, it was pointed out that the DP is a quantum field whose 
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energy–momentum relation deviates from the mass-shell. Second, the characteristics of 

the DP, as an off-shell quantum field, were reviewed. Third, theories having a physical 

basis were demonstrated. They were the electromagnetic response theory and a theory 

based on spatio-temporal vortex hydrodynamics. Fourth, theories having a mathematical 

basis were introduced, which can serve as invaluable guides for gaining a deep 

understanding of the concepts of the physics-based theories above. These theoreies were 

quantum probability theory and quantum measurement theory. Finally, a micro–macro 

duality theory was demonstrated, which serves as a foundation for embarking on the 

study of off-shell science.  
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Abstract 

This paper investigates the gigantic magneto-optical effect in a SiC light-emitting diode fabricated by dressed-

photon–phonon (DPP)-assisted annealing. Very large values of the Verdet constant and the Faraday rotation angle 

were obtained, namely, 660 deg/A and 2480 deg/cm, respectively, at a wavelength of 405 nm. The remanent 

magnetization was 0.36 mT. The magnetization curve, acquired at 27 °C, exhibited a clear hysteresis characteristic. 

This behavior of the SiC crystal, equivalent to that of a ferromagnet, was attributed to Al atom pairs autonomously 

formed as a result of the DPP-assisted annealing. 

1 Introduction 

Although crystalline silicon (Si) has been popularly used for electronic devices, there is 

a long-held belief that Si is not suitable for use in light-emitting devices because it is an 

indirect-transition-type semiconductor, and thus, its emission efficiency is very low. 

However, dressed-photon–phonon (DPP)-assisted annealing [1] has drastically 

increased the emission efficiency, resulting in the realization of novel light sources, 

including light-emitting diodes (LEDs) and lasers [2]. A novel photo-detector with 

optical gain [3] has also been realized by using crystalline Si. These devices can be 

advantageously applied to future photonic technology because crystalline Si is a 

nontoxic, abundant material, and furthermore, these devices can be integrated with 

electronic devices. Crystalline SiC, another indirect-transition-type semiconductor, has 

also been used to fabricate LEDs having light emission in the short-wavelength region 
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with the DPP-assisted annealing [4,5]. In addition to these optical functional devices, an 

optical polarization rotator using crystalline SiC has been invented [6,7], which can be 

used as an optical signal modulator. The advent of such novel devices means that 

conventionally used direct-transition-type composite semiconductors can be replaced by 

indirect-transition-type semiconductors in the fabrication of the basic devices needed for 

future optical signal processing and transmission systems. 

 The present paper investigates the fabrication and operation of an optical 

polarization rotator using crystalline SiC. The unique phenomenon involved here is that 

the crystalline SiC exhibits a gigantic magneto-optical effect and also a ferromagnetic 

characteristic. 

 

2 Device structure 

 

This section briefly describes the SiC device structure for the optical polarization rotator. 

A detailed description has been given in refs. [4,5]. An n-type 4H-SiC crystal with a 

resistivity of 25m cm and (0001) surface orientation was used. A 500 nm-thick n-type 

buffer layer was deposited on this crystal, after which a 10 m-thick n-type epitaxial 

layer (n-type dopant (N atoms) density 1 1016 cm-3) was deposited. The surface of the 

4H-SiC crystal was then implanted with an p-type dopant (Al atoms) by ion implantation. 

To activate the Al ions for forming a p-n homojunction, thermal annealing was 

performed for 5 min. at 1800 °C. After this, a second thermal annealing was performed 

under the same conditions as above. 

Although the structure was almost the same as that of the SiC-LED described 

in refs. [4,5], it was inverted, resulting in the SiC substrate being the top layer. 

Furthermore, an H-shaped electrode formed of a Cr/Pt/Au (100 nm/150 nm/200 nm 

thick) stripe film was deposited on the top surface, as shown in Fig. 1(b). A homogeneous 

electrode formed of Cr/Ni/Au (100 nm/150 nm/200 nm thick) was deposited on the 

bottom surface. After this, the 4H-SiC crystal was diced to form a device with an area 

of 500 ｍ  500 ｍ. Figures 1(a) and (b) show the cross-sectional structure of a 

fabricated device and a photograph of the device taken from above, respectively. 

A forward bias voltage of 12 V (current density 45 A/cm2) was applied to the 

device to bring about annealing due to Joule-heat, which caused the Al atoms to diffuse. 

During this process, the device was irradiated from the top surface with laser light 

(optical power 20 mW) having a wavelength of 405 nm. This induced the DPP-assisted 
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annealing process, which modified the Al diffusion, leading to the autonomous 

formation of a spatial distribution of Al atoms. As a result, the device worked as an LED 

by momentum exchange between the electrons in the conduction band and the 

multimode coherent phonons in the DPP. The light emission principle, device fabrication, 

and operating characteristics of this LED were described in refs. [4, 5]. 

 

Fig. 1 Cross-sectional profile (a) and photograph (b) of a polarization rotator using a 4H-SiC crystal. The 

yellow circle represents the cross-sectional position of the incident light beam. 

 

3 Performance of optical polarization rotator 

 

To operate the device as an optical polarization rotator, a current was injected to the H-

shaped electrode to inject electrons and to generate a magnetic field, simultaneously. 

⊥BThe spatial distribution of the magnetic flux density  normal to the top surface (the 

upward green arrow in Fig. 2(a)) was estimated by numerical simulation. Figure 2(b) 

Ishows the result, where the injection current   was 30 mA. (Since the p-n 


⊥Bhomojunction was only 75 m below the top surface, the value of  in this figure 

can be considered to be equal to that at the p-n homojunction.)  

rot In order to measure the polarization rotation angle , linearly polarized 405 

nm-wavelength light was made normally incident on the top surface of this device, as 

schematically illustrated in Fig. 3(a). The yellow circles in Figs. 1(b) and 2(b) represent 

⊥Bthe cross-section of the incident light beam. The value of  at this spot was evaluated 

to be 1.8 mT from Fig. 2(b). That is, the relation 

dB

dI

⊥ =0.06 (T/A)      (1) 

holds. 
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Fig. 2 Magnetic flux density generated by the current injected into the H-shaped electrode. (a) Schematic 

illustration of the profile of the H-shaped electrode formed of a Cr/Pt/Au stripe film on the top surface. 

The upward green arrow represents the normal component  of the generated magnetic flux density. 

(b) Calculated spatial distribution of , where the injected current was 30 mA. The yellow circle 

represents the cross-sectional position of the incident light beam (Fig. 3(a)). 

 

 

Fig. 3 Measured temporal variation of the light intensity and the estimated values of the polarization 

rotation angle . (a) Experimental setup to measure the value of . (b) Closed circles represent the 

measured light intensity transmitted through the Glan-Thompson prism. The red line A is the waveform 

of the triangular current injected into the device. Its frequency and amplitude were 166 Hz and 30 mA, 

respectively. (c) The relation between  and . (The unit ( rad) written along the vertical axis of 

Fig. 2 in ref.[6], and also that of Fig. 8.18(b) in ref. [7], is wrong. The correct unit (rad) is written on the 

vertical axis of (b) above.) 

 

The light reflected from the Cr/Ni/Au film on the rear surface propagated back 

to the top surface and was transmitted through a Glan-Thompson prism, after which the 

transmitted light intensity was measured. Closed circles in Fig. 3(b) represent the 

measured values of the transmitted light intensity. As shown by a red line A, the 

frequency and the amplitude of the triangular current injected into the H-shaped 

⊥
B

⊥
B

rot rot

⊥
B rot
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⊥Belectrode were 166 Hz and 30 mA, respectively. The measured relation between  

rotand  was derived from this figure and is represented by the red circles in Fig. 3(c). 

The solid line B was fitted to these circles. From the slope of the line B, the relation 

rotd

dB



⊥

 =2.2 103(deg/T)    (2) 

is derived. 

From eqs. (1) and (2), the relation 

1

2

rot rotd ddB

dI dI dB

 
⊥

⊥

=   =660(deg/A)   (3) 

is derived, where the value (1/2) was inserted in the left-hand side in order to evaluate 

the value for the one-way propagation of the light through the SiC crystal. This value 

corresponds to the Verdet constant, which was 105-106 times higher those of 

conventional paramagnetic materials that are transparent in the visible region [8]. This 

means that the present SiC crystal exhibited a gigantic magneto-optical effect. 

rot ⊥BThe right-pointing blue arrow in Fig. 3(c) indicates that  saturated as  

increased, as has been widely observed in conventional ferromagnetic materials. The 

saturated value was 0.65 rad (=37 deg). The total optical path length of the incident light 

propagating through the SiC crystal was 150 m because the crystal thickness was 75 

m, as shown in Fig. 1(a). Thus, the saturated value, normalized to the unit optical path 

length, corresponding to the Faraday rotation angle [8], was as large as 2480 deg/cm. 

⊥BFurthermore, the downward green arrow indicates the threshold value of , which was 

0.36 mT. This value corresponds to the remanent magnetization in conventional 

ferromagnetic materials, and was as large as those values. The two arrows suggest that 

the presently used SiC crystal acquired novel properties, equivalent to those of 

ferromagnetic materials. 

In order to find the origin of such novel ferromagnetic properties, a 

magnetization curve was acquired uisng a SQUID [6]. The results are given in Fig. 4. 

HHere, the applied magnetic field  (Oe) was proportional to the current injected to the 

H-shaped electrode. The black squares represent the measured values of the 

Mmagnetization  (emu/cm3) per unit volume of the SiC crystal. The solid curves were 

fitted to the black squares. These results clearly exhibit a hysteresis characteristic, which 

is inherent to ferromagnetic materials. Since these results were acquired at 27 °C, it was 

confirmed that the Curie temperature was estimated to be higher than 27 °C. Red open 

circles in this figure are the measured values before the DPP-assisted annealing was 

Mcarried out, where the values of  are much smaller those of the black squares, and 

no hysteresis characteristic is seen.  
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By comparing the black squares and red open circles, it was confirmed that the 

semiconductor SiC crystal was made to behave as a ferromagnet as a result of the DPP-

assisted annealing. This behavior originated from the formation of Al atom pairs, 

autonomously formed as a result of the DPP-assisted annealing. (For reference, this 

autonomous formation has also been confirmed in the case of B atoms in a Si-LED [2].) 

This origin can be understood by referring to the following two research findings:  

(1) It has been found that the triplet state of the electron orbital in an Al atom pair is 

more stable than the singlet state [9]. 

(2) Two electrons with parallel spins in the triplet state induce the ferromagnetic 

characteristic [10].  

 

Fig. 4 Magnetization curve, measured at 27 °C. Black squares and red open circles are for the 4H-SiC 

crystals after and before the DPP-assisted annealing, respectively. 

 

4 Summary 

 

This paper investigated the gigantic magneto-optical effect in a SiC-LED fabricated by 

DPP-assisted annealing. This device rotated the polarization angle of linearly polarized 

incident light. Very large values of the Verdet constant and the Faraday rotation angle 

were obtained, namely, 660 deg/A and 2480 deg/cm, respectively, at a wavelength of 

405 nm.  

The magnetization curve, acquired at 27 °C, exhibited a clear hysteresis 

characteristic, by which it was confirmed that the SiC crystal behaved as a ferromagnet. 

This characteristic was attributed to Al atom pairs, autonomously formed as a result of 

the DPP-assisted annealing. 
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Abstract 

This paper reviews basic research and technical developments on silicon (Si) light-emitting diodes (Si-LEDs) 

fabricated by using a novel dressed-photon–phonon (DPP) annealing method. These devices exhibit unique light 

emission spectral profiles in the wavelength range 900–2500 nm, including novel photon breeding features. The 

highest optical output power demonstrated was as high as 2.0 W. It is pointed out that boron (B) atoms, serving as p-

type dopants, formed pairs whose length was three-times the lattice constant of the host Si crystal. These B atom 

pairs are the origin of the photon breeding. A phenomenological two-level two-state (TLTS) model is presented, 

revealing that the external electric and optical fields, applied during the DPP-assisted annealing, drastically decrease 

the height of the potential barrier between the two states. This decrease is the reason why the spatial distribution of 

B atoms is efficiently modified by the DPP-assisted annealing even at low temperature. The TLTS model and a 

stochastic model confirm that the optimum DPP-assisted annealing is realized by setting the ratio of the electron 

injection rate and the photon irradiation rate to 1:1. A phase diagram is presented as an aid for developing a novel 

theory for realizing more efficient and higher-power Si-LEDs.  

1 Introduction 

Crystalline silicon (Si) has long been a key material supporting the development of 

electronics engineering for more than half a century. However, because Si is an indirect-

transition type semiconductor, it has been considered to be unsuitable for light-emitting 

devices. Because the bottom of the conduction band and the top of the valence band in 

Si are at different positions in reciprocal lattice space, the momentum conservation law 

requires an interaction between an electron–hole pair and phonons for radiative 

recombination; however, the probability of this interaction is low.  

Nevertheless, Si has been the subject of extensive research on the fabrication of 

Si light-emitting devices. These include, for example, research using porous Si [1], a 
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super-lattice structure of Si and SiO2 [2], and Si nanoprecipitates in SiO2 [3]. However, 

the devices fabricated in these research studies have some limitations, such as low 

efficiency, the need to operate at low temperature, complicated fabrication processes, 

and the difficulty of current injection. 

To solve these problems, a novel method that exploits the dressed photon (DP) 

has been invented [4,5]. The DP is a quantum field created when a photon couples with 

an electron–hole pair in a nanometric space. Theoretical studies have shown that a DP 

could excite multi-mode coherent phonons and couple with them to create a novel state 

called a dressed-photon–phonon (DPP) [4,6]. To realize a light-emitting diode (LED) by 

using crystalline Si, DPPs are used two times: first for device fabrication, and second 

for device operation. 

In the present paper, first, the fabrication and operation of a Si-LED are 

described in Sections 2 and 3, respectively. Second, Sections 4 and 5 review a technique 

for controlling the spatial distribution of boron (B) atoms by using a novel DPP-assisted 

annealing method. Finally, the optimum condition for this annealing is presented in 

Section 6. A summary is given in Section 7. Note that this paper discusses the principle 

and method of realizing infrared Si-LEDs. Refer to ref. [7] for details of visible light Si-

LEDs, Si-lasers, and LEDs fabricated using other indirect-transition-type 

semiconductors (SiC and GaP), and related devices, which have been developed by 

using DPP-assisted annealing. 

 

2 Fabrication  

 

For device fabrication, first, the surface of an n-type Si crystal is doped with B atoms to 

transform it to a p-type material for forming a p–n homojunction structure. Second, the 

Si crystal is annealed via Joule heat generated by current injection. During the annealing, 

the Si crystal surface is irradiated with light to create DPPs at the B atoms. This novel 

annealing has been called DPP-assisted annealing [7].  

 In early work on fabrication, an n-type Si crystal with low arsenic (As) 

concentration was used [5]. Recently, however, As atoms have been replaced by 

antimony (Sb) atoms (density, 11015 /cm3) because Sb atoms, which are heavier than 

As and Si atoms, are more advantageous for localizing the created phonons, which can 

couple with a DP for creating a DPP more efficiently. The thickness and the electrical 
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resistivity of the n-type Si crystal were 625 μm and 5.0 Ωcm, respectively.  

 Two-step ion implantation was carried out to dope the Si with B atoms: 

(1) First step: B atoms were implanted with an energy of 700 keV at a dose of 

2.7×1014/cm2. The peak concentration of B atoms was 1×1019/cm3 at a depth of 1400 nm 

from the Si crystal surface. 

(2) Second step: B atoms were implanted with an energy of 10 keV at a dose of 

5.3×1014/cm2. The peak concentration of B atoms was 1×1020/cm3 at a depth of 45 nm 

from the Si crystal surface. This second doping step was advantageous for decreasing 

the resistivity at the crystal surface.  

Mesh-electrode type and flip-chip type devices were fabricated to achieve 

higher current injection and efficient heat dissipation. These devices are described in the 

following subsections. 

 

2.1 Mesh-electrode type LED 

 

Figure 1 shows a photographic profile of the fabricated mesh-electrode type device [8,9]. 

A homogeneous flat film composed of Cr/Al/Au layers (thicknesses: 30/200/300 nm) 

was coated on the n-type surface of the Si crystal described above to serve as a cathode. 

A mesh film of Cr/Au (thicknesses: 30/300 nm) was coated on the p-type surface to serve 

as an anode. The crystal was diced to form devices with areal sizes of 1 mm  1 mm, 

and these devices were bonded on a PCB substrate made of high-thermal-conductivity 

AlN. The diameters of the electric wires bonded to the devices were increased from the 

previously employed 25 m [10] to 45 m to avoid damage to the wires and electrodes 

during high current injection. 

 

Fig. 1 Photographic profile of the fabricated mesh-electrode type LED. 

 

The conditions for the DPP-assisted annealing were: (1) A substrate temperature 

of 285 K; (2) irradiation light with a wavelength of 1342 nm (photon energy annealh =
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0.925 eV) and a power of 2.0 W; (3) injected current having a triangular waveform (50 

s period) and a peak current of 1.3 A (current density 1.3 A/mm2); and (4) an annealing 

time of 2 hours. 

Since hvanneal   is lower than the bandgap energy Eg   of the Si crystal, the 

irradiated light is not absorbed by the Si crystal. Therefore, in the regions where DPPs 

are hardly created, B atoms diffuse simply due to the Joule heat generated by the applied 

electrical energy. However, in the regions where DPPs are easily created, the thermal 

diffusion rate of the B atoms becomes smaller via the following processes: 

(1) Since the energy of the electrons driven by the forward-bias voltage is higher than 

Eg , the energy difference EFc −EFv  between the quasi Fermi energies in the conduction 

band EFc   and the valence band EFv   is larger than Eg  . Therefore, the Benard–

Duraffourg inversion condition is satisfied. Furthermore, since hanneal  Eg  , the 

irradiated light propagates through the Si crystal without absorption and reaches the p–

n homojunction. As a result, it creates DPPs efficiently at the B atoms. Since stimulated 

emission takes place via DPPs, the electrons create photons and are de-excited from the 

conduction band to the valence band via the phonon energy level. 

(2) The annealing rate decreases because a part of the electrical energy for generating 

the Joule heat is spent for the stimulated emission of photons. As a result, at the regions 

where the DPPs are easily created, the B atoms become more difficult to diffuse. 

(3) Spontaneous emission occurs efficiently at the regions in which the DPPs are easily 

created because the probability of spontaneous emission is proportional to that of 

stimulated emission. Furthermore, with the temporal evolution of process (2), the light 

from stimulated and spontaneous emission spreads through the whole Si crystal, and as 

a result, process (2) takes place autonomously throughout the entire volume of the Si 

crystal. 

 It is expected that this DPP-assisted annealing will form the optimum spatial 

distribution of the B atoms for efficient creation of DPPs, resulting in efficient LED 

operation. In a previous experimental study, temporal evolution of the temperature of 

the Si crystal surface was measured as annealing progressed [5]. After the temperature 

rapidly rose to 427 K, it fell and asymptotically approached a constant value (413 K) 

after 6 min, at which time the temperature inside the Si crystal was estimated to be about 

573 K. The features of this temporal evolution are consistent with those of the principle 
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of the DPP-assisted annealing under light irradiation described above: The temperature 

rises due to the Joule heat generated by the applied electrical energy. However, the 

temperature gradually falls because stimulated emission is induced by the DPPs created 

at the B atoms. Finally, the system reaches the stationary state. This temporal decrease 

in the device temperature, and the temporal increase in the emitted light intensity, have 

been theoretically reproduced by a stochastic model of the spatial distribution of B atoms, 

which was controlled by DPPs [11]. 

 

2.2 Flip-chip type LED 

 

To achieve higher injected current density than that of the mesh-electrode type device, a 

flip-chip type LED was fabricated [8,9]. First, its areal size was decreased. Second, 

larger-diameter electric wire was used. Third, a flip-chip structure was employed, in 

which the p-type layer was contacted to a PCB substrate for efficient heat dissipation.  

 Figure 2 shows a photographic profile of the fabricated device: A homogeneous 

flat film formed of Cr/Au/Ti/Pt/Au layers (thicknesses: 3/300/100/300/500 nm) was 

coated on the p-type surface of the Si crystal to serve as an anode. A patterned film of 

Cr/Au (thicknesses: 10/500 nm) was coated on the n-type surface as a cathode. The 

crystal was diced to form devices with areal sizes of 0.35 mm0.35 mm, which was 

smaller than that of the mesh-electrode type described in Subsection 2.1. This is 

equivalent to the size of commercially available devices made by using a conventional 

direct-transition type semiconductor. The diced device was bonded on a PCB substrate 

made of AlN. A single electric wire with a diameter as large as 60 m was used to realize 

high-density current injection without any electrical damage.  

 

Fig. 2 Photographic profile of the fabricated flip-chip type LED. 

 

The conditions for the DPP-assisted annealing were: (1) A substrate temperature 

of 289 K; (2) irradiation light with a wavelength of 1342 nm (photon energy annealh =
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0.925 eV) and a power of 0.24 W (areal power density: 1.9 W/mm2); (3) injected current 

with a triangular waveform (10 s period) and a peak current of 0.16 A (current density: 

1.3 A/mm2); and (4) an annealing time of 7.2 hours. 

 

3 Operation 

 

The operating principle of the fabricated Si-LED involves electron–hole pairs receiving 

enough momentum from coupled coherent phonons if the spatial distribution of B atoms 

in the p–n homojunction can be optimized for creating DPPs. Therefore, the light 

emission efficiency would be drastically increased by obeying the momentum 

conservation law. 

 For this operation, the light irradiation is no longer required; it is used only 

during the DPP-assisted annealing. Only forward current is injected, as in the case of 

conventional LED operation. This forward current causes an electron to be injected into 

the conduction band at the p–n homojunction, creating a photon by spontaneous 

emission even though its probability is very low. However, once this photon is created, 

it subsequently creates a DPP at the B atom in the p–n homojunction, and this DPP 

interacts with another electron in the conduction band to exchange momentum so that a 

secondary photon is created. By repeating these momentum exchange and photon 

creation processes, the emitted light intensity is amplified and reaches a stationary value 

within a short duration, so that sufficiently high-power light is emitted from the p–n 

homojunction. 

 It should be noted that photon breeding occurs during device operation [12]: 

The photon energy of the emitted light is equal to the photon energy  of the light 

irradiated during the annealing. (This is in contrast to a conventional device, where the 

photon energy of the emitted light is determined by .) This is because the difference 

between   and   is compensated for by the energy of the created phonons. 

This compensation is possible because the spatial distribution of the B atoms has been 

controlled by the light irradiated during the DPP-assisted annealing, enabling the most 

efficient emission of photons with identical photon energy. In other words, the light 

irradiated during the DPP-assisted annealing serves as a “breeder” that creates photons 

with an energy equivalent to 
 
h

anneal
. This is the reason why this novel phenomenon is 

named photon breeding with respect to photon energy.  

 Photon breeding has been observed not only for the photon energy but also for 

hanneal

Eg

hanneal
Eg
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photon spin [13]. For example, linearly polarized light is emitted from the LED if it was 

fabricated by irradiating the LED with linearly polarized light during the annealing step. 

(Remember that the light emitted from a conventional LED is not polarized.)  

 The relationship between the forward-bias voltage (V) applied to the Si-LED 

and the injection current ( I ) indicated negative resistance [14]. This was due to the 

spatially inhomogeneous current density and the generation of filament currents. In other 

words, the B distribution had a domain boundary, and the current was concentrated in 

this boundary region. A center of localization where the electrical charge is easily bound 

was formed in this current concentration region, and a DPP was easily created there. 

That is, the negative resistance is consistent with the principle of the device fabrication 

described in Section 2.  

 

3.1 Mesh-electrode type LED 

 

Figure 3 shows the relations between the injected current ( I ) and the optical output 

power ( P ) of the upward-emitted light from the upper surface of the Si-LED, acquired 

at several substrate temperatures [8,9]. The figure shows that P  is proportional to 
2I  

in the lower current region, whereas it is proportional to 
4I  in the higher current region. 

The origin of this
2I -dependence has been attributed to the momentum transfer between 

localized phonons and electrons caused by electron–electron scattering [10]: In the case 

of a conventional LED fabricated with a direct-transition-type semiconductor, electron–

electron scattering decreases the light emission efficiency. However, in the present Si-

LED, this scattering process plays a different role. As will be explained in Section 4, the 

B atom pairs in the p–n homojunction are apt to stretch in a plane perpendicular to the 

[001] orientation of the Si crystal, i.e., perpendicular to the propagation direction of the 

light irradiated during the DPP-assisted annealing. Here, not only phonons but also 

electrons can be captured by these B atom pairs because they serve as cavity resonators 

for creating localized phonons. In other words, electrons can appear due to DPP-assisted 

annealing even in the area of the energy band structure where electrons cannot exist 

originally. Thus, two electrons could couple with localized phonons, leading to light 

emission by electron–electron scattering and the observed 
2I  -dependence of the 

emitted light power P .  

The 
4I  -dependence originated in amplification by stimulated emission. By 
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defining the current at the boundary between the region of the 
2I - and 

4I -dependences 

as the threshold thI , it is found that its value was lower at lower substrate temperatures. 

For example, it was 580 mA at 77 K. This means that the threshold current density was 

0.58 A/mm2, which is close to the threshold current density (0.20–0.35 A/mm2) of a Si-

laser fabricated by the DPP-assisted annealing [15]．The highest optical output power 

in Fig. 3 was 2.0 W with an injection current of 2.0 A and a substrate temperature of 77 

K. This value is as high as 103-times that of a commercially available LED*.  

 

*For example, the optical output power of a Hamamatsu Photonics device L12509-0155K, which is made 

of a direct-transition type semiconductor (InGaAs), is 2 mW. The peak emission wavelength is 1.55 m.  

 

Fig. 3 Relations between the injection current and the optical output power. 

Substrate temperatures were 77 K (A), 273 K (B), 290 K (C), and 293 K (D). 

 

Figure 4 shows the spectral profile of the emitted light, which was acquired by 

cooling the substrate to 77 K and injecting a current of 2.0 A. In this figure, gE  

represents the bandgap energy of the Si crystal at 77 K. This figure shows that the 

spectral profile has several peaks at g phononE nE− , where n  is an integer and phononE  
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is the phonon energy. The spectral peak at 3g phononE E−   corresponds to the photon 

energy annealh   of the light irradiated during the DPP-assisted annealing [13]. This 

correspondence is the photon breeding described in Subsection 2.1 [12]. Three phonons 

contribute to the light emission at 3g phononE E− , because the length of the B atom pair 

is three-times the crystal lattice constant of Si. This figure also shows the higher 

harmonics of the phonon contributions, i.e., 6g phononE E−  and 9g phononE E− .  

 

Fig. 4 Spectral profile of the emitted light at substrate temperature of 77 K. 

 

3.2 Flip-chip type LED 

 

Figure 5 shows the relations between I  and P  of the upward-emitted light from the 

upper surface of the Si-LED, acquired at several substrate temperatures. The highest 

optical output power in this figure was as high as 2.0 W at an injection current of 3.0 A 

and a substrate temperature of 77 K. This demonstrates that an extremely high optical 

output power density was achieved, as high as eight-times that of the mesh-electrode 

type LED described in Subsection 3.1. 

 The relations between I   and P   exhibited more complicated profiles than 

those in Fig. 3: In the low-current region [a], P  increased slowly with increasing I , 
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whereas it increased rapidly in the high-current region [c]. The unique feature is that P  

decreased with increasing I   in the intermediate region [b]. Figures 6(a)-(c) show 

photographs of the upward-emitted light spots in the regions [a]-[c], respectively. 

Among them, Fig. 6(b) shows that the light was emitted not only in the upward direction 

but also toward the side of the device. This side emission was attributed to the decrease 

in the observed value of P  in region [b]. It should be noted that this side emission was 

due to stimulated emission, which suggests the possibility of super-luminescence or 

lasing operation. 

 

Fig.5 Relations between the injection current and the optical output power of the upward-emitted light 

from the surface of the Si-LED. 

Substrate temperatures were 77 K (A), 195 K (B), 255 K (C), and 283 K (D). 

 

 

Fig.6 Photographs of the upward-emitted light spots. 

(a), (b), (c) are images obtained in regions [a], [b], and [c] in Fig. 5, respectively. 

 

As was the case in Fig. 3, the threshold thI  can be defined as the current at 
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the boundary between regions [b] and [c]. Figure 7 shows its dependence on the substrate 

temperature T . The solid line, fitted to the experimental results indicated by the closed 

circles, was expressed as ( )0 0exp /thI I T T= . The characteristic temperature 0T  in this 

expression was 63 K, which corresponded to the energy of three phonons, 3 phononE , in 

the DPP. This means that the electron–hole pair was confined in the potential well 

formed by three phonons. This value of 0T  was as high as that of a conventional laser 

fabricated by a direct-transition type semiconductor (InGaAsP), lasing at a wavelength 

of 1.3 m [16], which suggests that future progress in this work will realize highly 

reliable light-emitting devices using crystalline Si. 

 

 
Fig. 7 Relation between the substrate temperature and the threshold current. 

 

Figure 8(a) shows the spectral profile of the light emitted from the flip-chip type 

LED, which was acquired by cooling the substrate to 77 K and injecting a current of 

3.21 A. Figure 8(b) shows the profile at a substrate temperature of 283 K and an injection 

current of 2.45 A. These figures also clearly demonstrate spectral peaks at 3g phononE E− , 

6g phononE E− , and 9g phononE E− , as was the case in Fig. 4.  

 

4 Spatial distribution of boron 

 

This section reviews the three-dimensional spatial distribution profile of the doped B 
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atoms formed as a result of the DPP-assisted annealing [13]. Atom probe field ion 

microscopy was used to acquire this distribution with sub-nanometer resolution [17]. It 

should be noted that the Si crystal is composed of multiple cubic lattices with a lattice 

constant  a  of 0.54 nm [18], and its top surface lies in the xy-plane (Fig. 9). The light 

irradiated during the DPP-assisted annealing is normally incident on this plane; i.e., the 

light propagation direction is parallel to the z-axis.  

 

Fig. 8 Spectral profiles of the light emitted from the flip-chip type LED at substrate temperatures of 77 K 

(a) and 283 K (b). 
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Fig. 9 Profile of the Si-LED under irradiation for the DPP-assisted annealing. 

 

Some of the regularly arranged Si atoms are replaced by the doped B atoms in 

the DPP-assisted annealing. It has been pointed out that phonons can be localized at the 

B atoms for creating DPPs under light irradiation because the B atoms are lighter than 

the Si atoms. However, for this localization, it has also been pointed out that two or more 

adjacent B atoms (in other words, two or more unit cells containing B atoms) are 

required [19]. Since the doped B atom concentration is sufficiently low, making it 

difficult for more than three B atoms to aggregate, the following discussion considers 

two closely located adjacent B atoms (a B atom pair), at which a phonon is localized for 

creating a DPP. That is, the pair of unit cells containing the B atoms serves as a phonon 

localization center. 

Figures 10(a) and (b) show the numbers of B atom pairs plotted as a function 

of the separation,  d , between the B atoms in the pair, which were derived from the 

measurement results. Since the distribution of the number of B atom pairs is nearly 

random, it can be least-squares fitted by the Weibull distribution function (the solid curve 

in these figures). In the un-annealed Si crystal (Fig. 10(a)), the measured number of B 

atom pairs deviates from the solid curve in the range  d 4.5 nm. The deviation depends 

on the characteristics of the ion implantation.  

In contrast, in the Si crystal after the DPP-assisted annealing (Fig. 10(b)), the 

deviation is much less than that in Fig. 10(a), which means that the DPP-assisted 

annealing modified the spatial distribution and decreased the deviation induced by the 

ion implantation, making the distribution more random. However, at specific values of 



14 

 

 d  ( = na , where  n=3, 4, 5, 6; refer to the four downward arrows in this figure), the 

number of B atom pairs still deviates from the solid curve and is larger than that of the 

solid curve. This is explained as follows: The B atom pair with the shortest  d  (i.e., 

equal to the lattice constant  a ) can orient in a direction parallel to the [100], [010], or 

[001] orientation because the Si crystal is composed of multiple cubic lattices. As a result, 

the momentum of the localized phonon points in this direction, which corresponds to the 

  − X  direction in reciprocal space. Thus, a photon is efficiently created because this 

  − X  direction is the same as the direction of the momentum of the phonon required 

for recombination between an electron at the bottom of the conduction band at the  X -

point and a hole at the top of the valence band at the  -point. Here, it should be noted 

that the absolute value of the momentum of the phonon has to be /h a  for this electron–

hole recombination to take place. Furthermore, it should also be noted that, among the 

phonons localized at the B atom pair with separation  d  ( = na ), the absolute value of 

the momentum of the lowest mode is /h na . By comparing these two absolute values, 

it is found that the DPP at this B atom pair has to create  n  phonons for recombination. 

Thus, it can be concluded that the four downward arrows in Fig. 10(b) indicate selective 

increases in the number of B atom pairs with separation  d = na   due to the DPP-

assisted annealing, and these pairs serve as localization centers for the phonons.  

 

Fig. 10 Number of B atom pairs plotted as a function of the separation  d  between the B atoms in the 

pair.  (a) The un-annealed Si crystal. (b) The Si crystal subjected to DPP-assisted annealing. 
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Figure 11(a) shows the spatial distribution of B atom pairs after the DPP-

assisted annealing, which was recently acquired by improving the accuracy of atom 

probe ion microscopy [20]. The thick downward arrow in this figure clearly 

demonstrates that the deviation takes the maximum value at  n =3, which means that B 

atom pairs most efficiently create three phonons for light emission, as is schematically 

shown in Fig. 11(b). As a result, the emitted photon energy 
 
h

em
  is expressed as 

  
hv

em
= E

g
−3E

phonon
 . By substituting the values of 

 
E

g
  (= 1.12 eV) and the relevant 

optical mode phonon energy 
 
E

phonon
 (=65 meV [21]) into this equation, the value of 

 
h

em
  is derived to be 0.925 eV, which is identical to the photon energy 

 
hv

anneal
 

irradiated during the DPP-assisted annealing. This numerical relation is consistent with 

the experimental results in Figs. 4 and 8, which confirms that photon breeding with 

respect to photon energy occurs. The two thin downward arrows in Fig. 11(a) represent 

the values at 6n =  and 9n = , which correspond to 6g phononE E−  and 9g phononE E− , 

respectively, in Figs. 4 and 8. 

 

Fig. 11 (a) Number of B atom pairs, acquired by improving the measurement accuracy, and (b) the energy 

band structure of Si for schematically explaining light emission. 
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 Figures 10(b) and 11(a) indicate selective increases in the number of B atom  

pairs with separation  d = na . This means that, since  n  is an integer, B atom pairs are 

apt to orient along a plane perpendicular or parallel to the top surface of the Si crystal 

(zenith angle   = 0  or  90 ). Orientation along other directions in which  n  is not 

an integer (   0 , 90 ) hardly occurs. Figure 12 shows the relation between the zenith 

angle   and the number of B atom pairs. It can be seen that this number takes the 

maximum value at   = 90 , which means that the B atom pairs in the p–n homojunction 

are apt to stretch in the xy-plane, which is perpendicular to the [001] orientation of the 

Si crystal, i.e., perpendicular to the propagation direction (z-axis) of the light irradiated 

during the DPP-assisted annealing. On the other hand, the number of B atom pairs takes 

the minimum value at   = 0 , which means that the B atom pairs hardly orient along 

the propagation direction (z-axis) of the light irradiated during the DPP-assisted 

annealing. This is because the phonons are hardly localized along this direction since 

their momenta are parallel to   = 90  [22]. 

It is expected that photon breeding takes place not only with respect to photon 

energy, as described in Section 3, but also with respect to photon spin. That is, the light 

emitted from the LED can be polarized if the LED is fabricated by irradiating the Si 

crystal with polarized light during the DPP-assisted annealing. The fabrication method 

is the same as that described in Section 2, except that the irradiated light is linearly 

polarized along the x -axis. The diffusion of the B atoms was controlled by the linearly 

polarized light irradiated during the DPP-assisted annealing, with the result that the B 

atom pairs oriented along the y -axis . It has been experimentally confirmed that the 

degree of linear polarization increased with increasing DPP-assisted annealing time [13]. 

 

Fig. 12 Relation between the zenith angle   and the number of B atom pairs. 

  

Recent experimental work has confirmed that B atom pairs tend to form a chain-
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like configuration [20]: Figures 13(a) and (b) show these configurations before and after 

the DPP-assisted annealing, respectively, which were acquired by the atom probe field 

ion microscopy. The short black arrows in these figures represent B atom pairs. The 

probability of one B atom pair existing in close proximity to the other pair in Fig. 13(a) 

was 0.743. In contrast, the probability in Fig. 13(b) increased to 0.788. The increase 

indicates that the B atom pairs tend to form a chain-like configuration. The red curves 

in these figures represent such a configuration.  

 

Fig. 13 Measured spatial distribution of B atom pairs, acquired before (a) and after (b) the DPP-assisted 

annealing.  

The arrow in these figures represents the B atom pair. Red curves represent the chain-like configurations 

of the B atom pairs. 

 

5 Effectiveness of the low-temperature DPP-assisted annealing 

 

This section examines the reason why the spatial distribution of B atoms was effectively 

controlled by the DPP-assisted annealing at a temperature as low as 573 K, as presented 

in Subsection 2.1. For this examination, a two-level two-state (TLTS) model is used. 

This model has been adopted for accurately describing the spatial distribution of Zn 

atoms doped in a GaP-LED [23]. It enables evaluation of the potential barrier height of 

the electron, which is decreased by applying an external field. For reference, the details 

of the TLTS model have been reviewed in refs. [24,25]. 

Figure 14 shows the energy level diagram of the two-level system model [25]. 

The horizontal axis does not represent any specific physical quantity, whereas the 

vertical axis is the electron energy. The states A and B represent the electron states before 
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and after the DPP-assisted annealing, respectively. They are composed of two energy 

levels, i.e., the ground state ( g AE , gBE ) and the excited state ( exAE , exBE ), which 

respectively correspond to the valence and conduction bands in a semiconductor. The 

DPP-assisted annealing forces a forward transition from state A to state B. (The 

possibility of a backward transition from state B to state A is reviewed in Section 6.) The 

initial and final states of this forward transition are gAE   and gBE  , respectively. 

Since the potential barrier gV  in the ground state is generally high, the transition takes 

place through the lower potential barrier exV  in the excited state after excitation from 

gAE  to exAE . De-excitation from exBE  to the final state gBE  takes place after 

this transition. 

 

 

Fig. 14 The energy level diagram of the two-level two-state model. 

 

The TLTS model can describe the DPP-assisted annealing rate, depending on 

which state the electron is in: 

State A: State A corresponds to the region in the Si crystal where the spatial distribution 

of B atoms is not suitable for generating DPPs. Therefore, the electron in exAE  
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generates Joule heat. On the other hand, the electron in gAE  is excited by absorbing 

the irradiated light, and, as a result, Joule heat is also generated. Because of the Joule 

heat generated in these cases, the annealing rate is higher in state A. 

State B: State B corresponds to the region in the Si crystal where the spatial distribution 

of B atoms is suitable for generating DPPs. Since electron–hole pairs can radiatively 

recombine in this case, the light irradiated during the DPP-assisted annealing triggers 

stimulated emission. As a result, the annealing rate is lower in state B because the 

stimulated emission optical energy dissipates from inside the Si crystal to the outside.  

Due to the difference in the annealing rates in states A and B, the spatial 

distribution of B atoms changes autonomously. When it reaches that of state B, the DPP-

assisted annealing is completed, and the Si-LED is thus fabricated. It has been 

experimentally confirmed for a GaP-LED that the external electric and optical fields 

applied during the DPP-assisted annealing drastically decreased the value of exV *.  

This decrease is the reason why the spatial distribution of B atoms was 

efficiently modified by the DPP-assisted annealing even at low temperature, as described 

in Subsection 2.1 (573 K). In other words, the outstanding technical advantage of the 

DPP-assisted annealing is that it does not require any high-temperature electric furnaces, 

which have been needed for conventional thermal annealing. 

 

* In the absence of an external field, the value of exV  that electrons in the doped Zn atoms must exceed 

to make a transition inside the GaP crystal was 0.61 eV. The value obtained when Ga sites were substituted 

via the kick-out mechanism was 1.64 eV [26]. However, with the external fields, it was estimated to be 

as low as 0.48 eV [23].  

 

 

6. Optimum condition for DPP-assisted annealing 

 

This section presents the optimum condition for DPP-assisted annealing, i.e., the 

optimum ratio between the electron injection rate and the photon irradiation rate for 

DPP-assisted annealing [23]. First, the electron is assumed to be in the excited or ground 

state of state B ( exBE  or 
gBE ) in Fig. 14 as a result of DPP-assisted annealing, i.e., 
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as a result of the forward transition from state A to state B. Next, the solid, broken and 

dotted arrows (a)–(c) in Fig. 14 represent the possible paths of the electron for de-

excitation, excitation, and backward transition via photon emission and absorption, 

which may subsequently occur by continuing the DPP-assisted annealing. 

Path (a): The electron in exBE   can emit a photon via spontaneous or stimulated 

emission. Thus, it de-excites to 
gBE  without a transition back to state A. 

Path (b): If the electron in exBE  does not emit a photon, it transitions back to exAE  

in state A, and subsequently de-excites to 
gAE  via nonradiative relaxation. 

Path (c): The electron in 
gBE   is excited to exBE   by absorbing a photon. It 

subsequently transitions back to exAE   in state A and de-excites to 
gAE   via 

nonradiative relaxation, as in path (b). 

In the case of path (a), the spatial distribution of B atoms remains unchanged 

even though DPP-assisted annealing proceeds, because both the initial and final states 

( exBE  and 
gBE ) are in state B. However, in the case of paths (b) and (c), the final 

state 
gAE  is in state A, and this spatial distribution easily changes as DPP-assisted 

annealing proceeds. Thus, to confine the electrons in state B, paths (b) and (c) must be 

blocked to prevent the backward transition.  

Noting that a photon causes an electron to emit another photon via stimulated 

emission, a promising method for blocking the paths is to set the ratio of the electron 

injection rate and the photon irradiation rate to 1:1, which corresponds to the optimum 

condition for the DPP-assisted annealing. If the electron injection rate is higher than the 

photon irradiation rate, the excess electrons do not emit photons via stimulated emission 

but escape through path (b). On the other hand, if the photon irradiation rate is higher 

than the electron injection rate, the excess photons do not cause electrons to emit photons 

via stimulated emission but allow the electrons to escape through path (c).  

Experiments have been carried out to confirm this optimum condition by using 

a GaP-LED as a specimen [23]. The experimental results showed that the rate of increase 

in the emitted light intensity due to the DPP-assisted annealing took the maximum value 
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when the ratio between the photon number and the electron number was 1.3:1, which is 

approximately 1:1. This clearly shows the optimum condition claimed above. This 

optimum condition has been theoretically reproduced by a stochastic model of the spatial 

distribution of B atoms, which was controlled by the DPPs [11]. 

This optimum condition suggests that conventional thermal annealing, i.e., by 

heating the sample in an electric furnace, is not compatible with fabricating novel 

devices having photon breeding features even if the furnace temperature can be 

increased to much higher than the value given in Subsection 2.2 (573 K). DPP-assisted 

annealing is the only suitable fabrication method.  

 

Fig. 15 Phase diagram for representing the area in which the rate of increase in the emitted light intensity 

due to the DPP-assisted annealing is high. 

 

The gray cone in the phase diagram of Fig. 15 represents the area in which the 

rate of increase in the emitted light intensity due to the DPP-assisted annealing is high, 

which was empirically illustrated through experiments and the discussion on the 

optimum condition above. Here, electronn  and photonn  are the electron injection rate and 

the photon irradiation rate, respectively. It should be pointed out that the rate of increase 

is the largest when / 1photon electronn n = , as was discussed above. In this figure, dE  is the 

magnitude of the dissipated optical energy. It is the magnitude of the energy of the 

stimulated emission, which is emitted from the electron that jumped into the DPP field. 
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Since this light propagates out from the Si crystal, the diffusion rate of the B atoms 

locally decreases around this DPP field, by which the spatial distribution of the B atom 

pairs is autonomously controlled to promote the DPP-assisted annealing. 

A novel theory is required since one of the major requests from experimentalists 

is to find the optimum condition for realizing the highest efficiency of creation and 

measurement of DPs. It is expected that Fig. 15 will serve as a reference to find such an 

optimum condition.  

 

7 Summary 

 

After reviewing fabrication of Si-LEDs using a novel DPP-assisted annealing method, 

their unique light emission spectral profiles were presented in the wavelength range 900–

2500 nm, including novel photon breeding features. The highest optical output power 

demonstrated was as high as 2.0 W, which was 103-times that of a conventional LED. 

It was experimentally found that the B atoms formed pairs as a result of the 

DPP-assisted annealing, and the length of these pairs was three-times the lattice constant 

of the Si crystal. The pairs extended in a plane perpendicular to the propagation direction 

of the light irradiated during the DPP-assisted annealing. These B atom pairs were 

confirmed to be the origin of the photon breeding. It was also found that photon breeding 

took place with respect to photon spin. Recent measurements confirmed that the B atom 

pairs tend to form a chain-like configuration. 

A phenomenological two-level two-state (TLTS) model confirmed that the 

external electric and optical fields applied during the DPP-assisted annealing drastically 

decreased the height of the potential barrier between the two states. This decrease was 

the reason why the spatial distribution of B atoms was efficiently modified by the DPP-

assisted annealing even at low temperature. The TLTS model and a stochastic model 

confirmed that the optimum DPP-assisted annealing was realized by setting the ratio of 

the electron injection rate and the photon irradiation rate to 1:1, which was also 

confirmed experimentally.  

A phase diagram was presented as an aid for developing a novel theory for 

finding the optimum condition for the highest efficiency of creation/measurement of 

DPs and for realizing more efficient and higher-power Si-LEDs.  
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Abstract: This article describes experimental estimation of the maximum size of a dressed 

photon (DP) by a photochemical vapor deposition method that has been used for forming a 

metallic zinc nanoparticle (Zn-NP) on a sapphire substrate. Because of the localized feature 

of the DP and of a unique non-resonant DP–molecule interaction, this method succeeded in 

excluding the contribution of the propagating light in the Zn-NP formation. The size of the 

deposited Zn-NP increased with increasing deposition time. Finally, the size saturated to a 

value that was independent of the radius of curvature of the fiber probe tip and the 

wavelength of the light used for irradiating the end of the fiber probe. From these results, it 

was concluded that the experimentally estimated maximum size was 50–70 nm.  

1. Introduction

A dressed photon (DP) is a quasi-particle representing the coupled state of a 

photon and an electron–hole pair in a nanometer-sized material 

(nanoparticle: NP) [1]. It has been confirmed that the size DPa of a DP is 

equivalent to the size NPa of the NP on which the created DP is localized [2]. 

This size is much smaller than the wavelength   of conventional 

propagating light. 

Because of the unique localization feature mentioned above and 
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because DPa  , a variety of application technologies developed so far [3] 

have realized an ultrahigh spatial resolution beyond the diffraction limit of 

conventional optical technologies. To realize further developments in these 

technologies, it is essential to estimate the minimum and maximum sizes of 

the DP ( ,DP Mina  and ,DP Maxa , respectively). A reasonable estimate is to assume 

that the minimum size ,DP Mina  is equivalent to the size of an atom atoma . This 

is because a fundamental interaction takes place between a photon and an 

electron in an atom for creating the DP*.  

On the other hand, the maximum size ,DP Maxa  has never been 

estimated. The advent of a novel theory is expected to make this estimation 

possible. To this end, this article describes experimental estimations of the 

maximum size ,DP Maxa  by using the localized features of the DP mentioned 

above and also a unique feature, called non-resonant DP–molecule 

interaction. 

 

(*) 

Experiments on DPs have been carried out by using ultraviolet light, visible light, or infrared 

light as a light source for creating the DP. Some infrared wavelengths can excite molecular 

vibrations, which can be treated by a theoretical model known as the dressed-photon–phonon 

model [4]. Microwaves have also been used to realize a spatial resolution as high as / 4000, 

where the wavelength   was 12 cm [5]. Here, it should be noted that microwaves do not 

interact with the electron in the atom even though it can excite a molecular rotation. Thus, 

the experiments using microwaves are not compatible with the present study described here.  

 

2. Methods for experimental estimation 

 

Photochemical vapor deposition (PCVD) based on DP-molecule interaction 

was adopted as the most appropriate method to experimentally estimate the 

maximum size ,DP Maxa . This is because the size, conformation, and position of 

the DP were transcribed to those of an NP formed on a substrate as a result 
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of deposition. As shown in Figs. 1(a) and (b), this method involved molecular 

dissociation by the DP and subsequent deposition of the dissociated atoms on 

the substrate [6,7]. 

 

 

Fig. 1 Photochemical vapor deposition based on DP–molecule interaction. 

(a) Dissociation of molecules. (b) Deposition of the dissociated atoms. 

 

 First, Zn(C2H5)2 (DEZn for short) was adopted as a specimen molecule. 

Gaseous DEZn molecules were filled into the vacuum chamber. A fiber probe 

and a substrate were also installed in the chamber. A DP was created on the 

tip of the fiber probe by irradiating the end of the fiber probe with propagating 

light. The DEZn molecules were dissociated when these freely flying 

molecules jumped into the field of the DP. The dissociated Zn atom 

subsequently landed on the substrate. After a very short migration on the 

substrate, the atom was adsorbed on the substrate. By repeating these 

processes, the number of adsorbed Zn atoms increased, resulting in the 

deposition of Zn atoms and the formation of a nanometer-sized metallic zinc 

nanoparticle (Zn-NP) on the substrate. Since the DEZn molecules were 

dissociated in the field of the DP, the size, conformation, and position of the 

formed Zn-NP were equivalent to those of the DP.  

 In the case of dissociating the DEZn molecules by conventional 

propagating light instead of by a DP, the wavelength of this light had to be 

shorter than 270 nm (photon energy 4.59 eV) for exciting an electron in the 
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DEZn molecule. To estimate ,DP Maxa , the DEZn molecules must be dissociated 

only by the DP on the tip of the fiber probe (Fig. 1(a)), for which the 

contribution of the propagating light used for creating the DP must be 

excluded. To achieve this, three ingenious tricks were employed: 

(1) The first was a photochemical trick: The wavelength of the propagating 

light for creating the DP was set longer than 270 nm. As a result, it was 

expected that the DEZn molecules would not be dissociated even if irradiated 

with propagating light, which scattered out from the tip of the fiber probe. 

Instead, it was expected that the DP on the tip would dissociate the DEZn 

molecules due to the non-resonant DP–molecule interaction. It has been 

confirmed that this novel dissociation originated from the multi-step 

excitation of the electron via molecular vibration energy levels, triggered by 

the DP [6,7]. 

(2) The second was an instrumentational trick: A primitive bare fiber probe 

was employed on which no metallic films were formed. As shown in Fig. 2(a), 

a conventionally used fiber probe was fabricated by sharpening a fiber with 

an advanced selective chemical etching method [8], resulting in high-

precision control of the nanometer-sized tip diameter, cone angle, and 

throughput of the DP creation. This high precision was essential to control 

the size, conformation, and position of the created DP on the tip for estimating 

,DP Maxa . The tapered part of the sharpened fiber was subsequently coated with 

an opaque metallic film in order to prevent the scattered propagating light 

from leaking out from the fiber probe. In contrast, the fiber probe used here 

was fabricated by a very primitive method. That is, the fiber was heated and 

mechanically pulled to sharpen it. As a result, high-precision control of the 

size, cone angle, and throughput were not expected. In addition, the probe 

was not coated with a metallic film (Fig. 2(b)), allowing the scattered 

propagating light to leak from the taper and tip of the fiber probe. Even when 

using such an unreliable fiber probe, the contribution of the propagating light 

was expected to be excluded because of its long wavelength, as discussed in 

(1) above. 

(3) The third was again a photochemical trick: For further insurance, the 

DEZn molecules were replaced by zinc-bis(acetylacetonate) (Zn(acac)2 for 

short) molecules [9,10]. Zn(acac)2 is known to be an optically inactive molecule, 
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and thus, it has never been dissociated by propagating light. However, it was 

expected here that it could be dissociated by the DP via excitation of a 

molecular vibration for depositing the dissociated Zn atoms on the substrate. 

This is also the application of a non-resonant DP–molecule interaction. 

 

 
Fig. 2  Structures and scanning electron microscopic images of fiber probes. 

(a) A high-precision fiber probe, which has been popularly used for high-spatial-resolution 

microscopy and spectroscopy. pa  is the radius of curvature of the tip. (b) A primitive fiber 

probe, which was used for the present experiments. 

 

3. Estimated results and discussion 

 

Figures 3(a)-(c) show images of a three-dimensional Zn-NP formed on a 

sapphire substrate by dissociating DEZn molecules; these images were 

acquired by using an atomic force microscope (AFM) [7]. The wavelengths   

of the propagating light for creating the DP were 325, 488, and 684 nm, 

respectively. In the case of Fig. 3(a), this wavelength was close to the value of 

270 nm given in Section 2. Thus, the contribution from the conventional 

propagating light might not have been sufficiently excluded. Tails 

represented by white broken curves in this figure were attributed to this 

contribution. 
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Fig. 3 AFM images of three-dimensional Zn-NPs formed on a sapphire substrate. 

The DEZn molecules were dissociated by the DP. The wavelengths of the propagating light 

for creating the DP were (a) 325 nm, (b) 488 nm, and (c) 684 nm. 

 

 In contrast to Fig. 3(a), the wavelengths of the propagating light in 

Figs. 3(b) and (c) were sufficiently longer than 270 nm, which means that the 

contribution from the propagating light was sufficiently excluded due to 

tricks (1) and (2) described in Section 2. That is, the DEZn molecules were 

dissociated only by the non-resonant DP–molecule interaction, resulting in 

AFM tail-free images of the Zn-NPs. The full width at the half-maximum 

(FWHM) of the AFM images were 45, 50, and 40 nm*, respectively, in Figs. 3 

(a)-(c), which were independent of the wavelength   of the propagating light. 

Thus, it was confirmed that these values corresponded to the size of the DP 

used for the present PCVD.  

 

(*) 

It should be noted that these values contained a systematic error originating from the spatial 

resolution of the AFM, which corresponded to the tip size of several nanometers of the AFM 

probe. Thus, the corrected values of the FWHM, obtained by subtracting this error, were 

slightly smaller than 45, 50 , and 40 nm. 

 

 Figure 4 shows images of the three-dimensional Zn-NPs formed on a 

sapphire substrate, where DEZn molecules were replaced by Zn(acac)2 

molecules based on tricks (2) and (3) in Section 2 [9,10]. The wavelength   

of the propagating light for creating the DP was 457 nm. In the case of Fig. 

4(a), low-power (65 W) propagating light entered the fiber in order to form 

a small Zn-NP on the substrate by maintaining the deposition rate 

sufficiently low. Because high-precision control of the deposition time was 

ensured by this low deposition rate, an FWHM for the Zn-NP as narrow as 5–
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10 nm was realized, which was the smallest value realized by the present 

PCVD method. The height was as low as 0.3 nm, which corresponded to the 

thickness of two layers of Zn atoms, demonstrating the high precision of 

deposition.  

 

 

Fig. 4 AFM images of three-dimensional Zn-NPs formed on a sapphire substrate. 

The Zn(acac)2 molecules were dissociated by the DP. The wavelength of the propagating light 

for creating the DP was 457 nm. (a) The power of the propagating light incident on the fiber 

probe was 65  W. The irradiation time was 30 s. (b) The power of the propagating light 

incident on the fiber probe was 1 mW. The irradiation time was 15 s. 

 

By increasing the incident propagating light power (1 mW), a larger 

Zn-NP was formed, from which the maximum size ,DP Maxa  of the DP was 

accurately estimated. Figure 4(b) shows the result. The value of the FWHM 

was 70 nm, which was close to the values in Fig. 3. 

Figure 5 shows the dependence of the rate R  of depositing Zn atoms 

on the FWHM of the formed Zn-NP. Here, the value of the FWHM increased 

with increasing deposition time [11]. The DEZn molecules were dissociated 

by irradiating the end of the fiber probe with 325 nm-wavelength propagating 

light. This figure shows that the rate R  took the maximum when the FWHM 

was equal to the tip diameter 2 pa  (
pa =4.4 nm: tip radius of the fiber probe 

tip). This was due to the size-dependent resonance of the DP energy transfer 

between the tip of the fiber probe and the formed Zn-DP [12]. Further 

increases in the deposition time decreased R  while the size of the Zn-NP 

increased. Finally, the size and conformation of the Zn-NP became stable, 

independently of the value of 
pa . As a result, the value of the FWHM 
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saturated. Figures 3 and 4(b) show the profiles acquired after this 

stabilization.  

 

Fig. 5 Dependence of the deposition rate R  on the FWHM of the Zn-NP. 

The wavelength of the propagating light for creating the DP was 325 nm. Closed circles and 

squares represent the measured values when the powers of the light incident on the fiber 

probe were 5  W and 10  W, respectively. The downward arrow represents the value of 

2 pa . 

 

The FWHM values in Figs. 3 and 4(b) were 50–70 nm, including 

systematic errors due to the spatial resolution of the AFM. They were 

independent of pa and the wavelength   of the light used for irradiating the 

end of the fiber probe. A larger FWHM was not realized even by increasing 

the deposition time. From these unique results, it was concluded that the 

experimentally estimated maximum size ,DP Maxa  of the DP was 50–70 nm.  

 

4. Summary 

 

In order to stimulate the advent of a novel theory for describing the maximum 

size ,DP Maxa  of a DP, this article described experimental estimation of ,DP Maxa  

by PCVD for dissociating DEZn molecules and Zn(acac)2 molecules in order 

to form a Zn-NP on a sapphire substrate.  

The experimental methods and results are summarized as follows: 

(1) The present PCVD method excluded the contribution of the propagating 
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light even though this light leaked out from the fiber probe. This exclusion 

was ensured by using a non-resonant DP–molecule interaction.  

(2) The size of the Zn-NP increased with increasing deposition time, and 

finally, the size and conformation of the Zn-NP became stable. As a result, the 

value of the FWHM saturated. 

(3) The saturated value of the FWHM was independent of the tip radius pa  

of the fiber probe and the wavelength   of the propagating light used for 

creating the DP. 

From the results above, it was concluded that the experimentally 

estimated maximum size ,DP Maxa  of the DP was 50–70 nm.  
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Abstract

We find that the electric field is not a suitable physical quantity to describe the response of

a non-metallic material in the study of non-resonant near-field optics. In practice, we show the

spin-less one-electron two-level system responds differently to longitudinal and transverse electric

fields under the non-resonant condition. This difference originates from the non-relativistic nature

of the system, and should exist in actual many-electron systems. For this type of system, it is a

logical fallacy to use the constitutive equation in terms of the total electric field and the associated

permittivity. Recognizing this fallacy, both experimental and theoretical progress is needed in the

field of non-resonant near-field optics of non-metallic materials.
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FIG. 1: Target materials under near- and far-field incidences: the former is exposed to the inci-

dent longitudinal and transverse electric fields simultaneously (the left side), whereas the latter is

exposed to only the transverse field (the right side).

Under non-resonant conditions in the optical near field, non-metallic materials cause

various phenomena not observed in conventional optics, such as highly efficient light emis-

sion from indirect-transition-type semiconductors (LED[1, 2] and Laser[2, 3]), chemical

reaction with insufficient photon energy (chemical vapor deposition[4], optical near-field

lithography[5], optical near-field etching[6]), frequency up-conversion[7, 8], non-adiabatic

effect beyond forbidden transition (local energy concentration[9], nano-photonic gate

device[10]), and gigantic magneto-optical rotation of the LED[2, 11, 12]. Theoretically,

dressed photons, namely, the localized electromagnetic field easily coupled with phonons,

were introduced to allow non-adiabatic transitions[13–15].

This Rapid communication focuses on another fundamental role of the non-resonant

condition in near-field optics (NFO) with non-metallic materials. We examine the one-

electron two-level system close to both the light source and the observation point under long

wavelength approximation (LWA), and find it a logical fallacy to regard the total electric field

as causing the response under the non-resonant condition. In contrast, under the resonant

condition or the far-field observation condition, the electric field works as expected. These

findings originate from the non-relativistic nature of the system and should be applicable in

actual optical systems with non-metallic materials. For the readability, calculation details

are given in the last part of this paper.

Suppose a small-scale material is placed in the vicinity of a nanostructure, which functions

as a light source (Fig.1). In such a system, under the NF incidence condition, the target

material is exposed to longitudinal and transverse electric fields simultaneously, whereas

2



in a system under the far-field incidence condition, the target material is exposed only to

the transverse field, which survives far from the light source. Therefore, the coexistence of

longitudinal and transverse electric fields distinguishes such a system under the NF incidence

condition from that under the far-field incidence condition.

Here, the longitudinal electric field originates from the charge density on the nanostruc-

ture, obeys Coulomb’s law, and has a non-radiative nature to localize around the nanostruc-

ture. On the other hand, the transverse electric field originates from the transverse current

density on the nanostructure, obeys the Ampere-Maxwell law and Faraday’s law, and has

a radiative nature allowing it to propagate far from the light source, accompanied by the

magnetic field. (The longitudinal current density is determined via the charge conservation

law, once the charge density is known, and is not an independent source.) Therefore, the

two incidences coexisting in an NF optical system have distinct properties.

Furthermore, owing to the non-relativistic nature of the system, the scalar and vector

potentials appear in a different manner in the Hamiltonian, which governs the electron re-

sponse, for example, (13) of Calculation details (i) in the last part of this paper. Considering

that the scalar and vector potentials under the Coulomb gauge represent the longitudinal

and transverse electric fields, respectively, one may confirm that the two types of incidences

in NFO cause different responses. Now our question is the following: under what condition

can we observe these differences?

Before proceeding with the analysis, let us first classify the optical systems. The two

systems under near- and far-field incidence conditions in Fig.1 are subdivided into two classes

depending on the near- or far-field observation condition. These four classes are listed in

Table I, together with a summary of the results mentioned below. In particular, the systems

of (I′) and (II′) are the limiting cases of null longitudinal incidence of the systems (I) and

(II), respectively. Thus, in the systems (I′) and (II′), the longitudinal response vanishes and

the difference in response may not be observed. In the following, therefore, we focus mainly

on systems (I) and (II), in which longitudinal incidence exists.

Microscopic responses to longitudinal and transverse electric fields. Applying the

linear response theory and the LWA to the electron system of the target material on a small

scale, the induced charge and current densities (as a result of the response), ∆ρ(r, t) and

∆j(r, t), are described as the total derivative with respect to the longitudinal and transverse

electric fields (as the cause of the response), ∆E(ℓ)(0, t) and ∆E(t)(0, t), where 0 is the

3



TABLE I: Classification of optical systems by distance from the target material to the light source

and distance from that to the observation point, together with a summary of the results; the

validity of the electric field as the cause of the response.

Near-field observation Far-field observation

Source:∆ρ and ∆j Source: ∆j

Near-field incidence :

∆E(ℓ) +∆E(t)

✗

✖

✔

✕

(I) NF optical system

non-resonant / resonant

✗

✖

✔

✕

(II) NF optical system

non-resonant / resonant

Validity of the electric field NG / OK OK / OK

Far-field incidence :

∆E(t)

✗

✖

✔

✕

(I′) NF optical system

non-resonant / resonant

✗

✖

✔

✕

(II′)conventional optical system

non-resonant / resonant

Validity of the electric field OK / OK OK / OK

representative position in the electron system under the LWA:

∆ρ(r, t) = χ
ρ←(ℓ)
j

(r, ω)∆E
(ℓ)
j
(0, t) + χ

ρ←(t)
j

(r, ω)∆E
(t)
j
(0, t) , (1)

∆ji(r, t) = χ
j←(ℓ)
ij

(r, ω)∆Ė
(ℓ)
j
(0, t) + χ

j←(t)
ij

(r, ω)∆Ė
(t)
j
(0, t) , (2)

where the partial derivative coefficients, χ···
···
(r, ω)’s are susceptibilities (response func-

tions), and Einstein’s rule is used for the summation over the vector indices, for example,

χ
ρ←(ℓ)
j

(r, ω)∆E
(ℓ)
j
(0, t) =

3
∑

j=1

χ
ρ←(ℓ)
j

(r, ω)∆E
(ℓ)
j
(0, t) . In (2), the time derivatives of the

two types of electric fields, namely, ∆Ė
(ℓ)
j
(0, t) and ∆Ė

(t)
j
(0, t), are regarded as the causes,

instead of the two types of electric fields themselves. The magnetic response vanishes in

the leading order under the LWA ; see Ref.[16]. The derivation of (1) and (2) is given in

Calculation details (i).

For simple evaluation of the susceptibilities in (1) and (2), suppose we have a spinless one-

electron system with two levels, the ground and excited states in the non-perturbed system

with eigenenergies, ~ω0 and ~ω1, and orbitals, ϕ0(r) and ϕ1(r), respectively. Those orbitals

are assumed to be bound states expressed by real functions, carry well-defined and distinct

spatial parities (even and odd parities), and form the normalized orthogonal complete set.

The excitation energy is ~∆ω1 ≡ ~ω1 − ~ω0 > 0; this finite excitation energy means that

the target is a non-metallic material, such as a molecule, nano-structured semiconductor
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and insulator.

The susceptibilities in (1) and (2) are derived in Calculation details (ii), and those leading

to the induced charge density result in the following:

χ
ρ←(ℓ)
j

(r, ω) =χ
ρ←(t)
j

(r, ω) = 2q2
η

η2 − 1

1

~ω
Dj ϕ0(r)ϕ1(r) , (3)

where η ≡~∆ω1

~ω
=

excitation energy

photon energy
, and (4)

Di ≡
∫

d3r ϕ1(r) ri ϕ0(r) . (5)

This means that the responses to the longitudinal and transverse electric fields are common,

such that the induced charge density has a linear relationship with the total electric field,

namely, ∆ρ(r, t) = χ
ρ←(ℓ) or (t)
j

(r, ω)
(

∆E
(ℓ)
j
(0, t) + ∆E

(t)
j
(0, t)

)

.

The susceptibilities leading to the induced current density are not so simple and result

in the following:

χ
j←(ℓ)
ij

(r, ω) =
q2~2

m

1

η2 − 1

1

(~ω)2
Dj (∂iϕ1(r)ϕ0(r)− ϕ1(r)∂iϕ0(r)) , (6)

χ
j←(t)
ij

(r, ω) =η2 χ
j←(ℓ)
ij

(r, ω)− q2~2

m

1

(~ω)2
ϕ0(r)ϕ0(r) . (7)

The susceptibility to the transverse electric field, (7), is composed of two terms. The first

term, namely, the resonant term, includes the energy denominator enhanced under the

resonant condition, η ≃ 1, as in the susceptibility to the longitudinal electric field, (6). The

second term, namely, the non-resonant term, does not include such a resonance factor.

Equal responses under the resonant condition. Under the condition η ≃ 1 in all cases

in Table I, (7) is dominated by the resonant term (the first term) over the non-resonant

term (the second term) and asymptotically equals (6).

χ
j←(t)
ij

(r, ω) ≃ χ
j←(ℓ)
ij

(r, ω) . (8)

Equation (8) together with (3) reveal the equivalency of the responses to the longitudinal

and transverse electric fields, so that the total electric field is regarded as the cause of the

response in any optical system under the resonant condition listed in Table I .

Equal responses under the far-field observation condition. In the system (II) and

(II′) in Table I, the far field to be observed is insensitive to the details of the source but is

determined by the spatial average of the source. Under the LWA, such an average can be
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achieved by the spatial average of the susceptibilities. Detailed calculations are shown in

Calculation details (iii); the results are as follows.

χ
ρ←(ℓ)
j

(r, ω) = χ
ρ←(t)
j

(r, ω) = 0 , (9)

χ
j←(ℓ)
ij

(r, ω) = χ
j←(t)
ij

(r, ω) = δi j
q2~2

mV
1

(~∆ω1) 2 − (~ω)2
, (10)

where the overline represents the spatial average and V is the volume of the target material.

From (9) and (10), one may not observe different responses to the two types of incidences

under the far-field observation condition. The null response represented in (9) is reasonable

because the induced charge density yields the longitudinal electric field, which has a non-

radiative nature and vanishes in the far-field regime.

Unequal responses under the non-resonant, NF incidence, and NF observation

conditions. The different responses claimed in the beginning of this Rapid communication

may be detected only in the system (I) in Table I under the non-resonant condition, which is

just the compliment to the popular optical systems under the resonant condition and/or the

far-field observation condition. In the NF optical system (I) with a non-metallic material un-

der the non-resonant condition, the total electric field is not the cause of the response; there-

fore, the response may not be described by the macroscopic constitutive equation (MCE),

namely, the linear relationship between the polarization and ”electric field” via permittivity,

and the microscopic susceptibilities are essential to treat separately the longitudinal and

transverse incidences.

In NFO, the response to the longitudinal electric field is discussed in Chap. 5 in Ref.[16]

and Chap. 9 in Ref.[18]. The present work is a further comparison of the two responses,

considering the non-resonant condition.

The present model is very simple and the responses may be modified in a many-electron

system or a low-symmetry system. However, the difference in the responses to the two

types of electric fields originates in the non-relativistic nature of the system (as stated in the

beginning of this Rapid communication), and should survive in actual NF optical systems

with non-metallic materials (the materials with finite excitation energy). Actually, there is

no reason for equating the two responses in the many-electron and low-symmetry systems.

Therefore, one may infer a guiding principle to highlight NF optical phenomena: under the

non-resonant condition and simultaneous NF-incident and NF-observation conditions, non-

metallic materials bring about NF-specific optical phenomena that may not be described
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by the MCE in terms of the electric field and the permittivity. Some of the experiments

mentioned in the beginning of this paper were performed under such conditions; thus, we

will analyze them in detail in future investigation.

A remark on applying the finite differential time domain (FDTD) method to an

NF optical system. The MCE in terms of the permittivity has been widely employed

to calculate the optical near field in the FDTD method[17]. One may notice that the

permittivity in the FDTD method carries a simple spatial dependence and leads to some

quantitative error. Actually, the microscopic susceptibilities, for example, (3), (6), and (7),

have rippling spatial distributions originating from the orbitals.

In the case of the NF optical system (I) in Table I with a non-metallic material under

the non-resonant condition, the situation is more serious because the concept electric field

is not available, such that it is a logical fallacy to use the MCE. Thus, a novel simulation

method is necessary.

NFO and many-electron problem. Why has the comparison of responses to the two

types of electric fields not been addressed in NF optical theory? First, in the long history of

optics, the NF optical system (I) in Table I under a non-resonant condition has been out of

focus. Such a system could not be resolved until the technical difficulty of NF observation was

overcome. Additionally, resonance phenomena continue to attract attention. Furthermore,

even in NFO, there has been less emphasis on non-metallic materials, as opposed to metallic

materials, which are essential for plasmonics.

The second reason is that the ordinary Hamiltonian for a many-electron system does

not include the longitudinal electric field, which is rewritten to the two-body Coulomb

interaction and eliminated. With this Hamiltonian, the response to the longitudinal electric

field incidence accompanies the Coulomb interaction, and is difficult to analyze. Therefore,

NFO is inevitably related to the many-electron problem; however, this has not been well

recognized for a long time. This study considered a one-electron system, avoiding the many-

electron problem. In future studies, the present scenario will be extended to a many-electron

system and nonlinear response, overcoming the many-electron problem, and applying the

findings to various phenomena mentioned in the beginning of this Rapid communication.

To the best of our knowledge, the present near-field optical system with non-metallic

material under the non-resonant condition is the third example that cannot be described

in terms of electric field and/or magnetic field, after the superconductor system with the

7



Meissner effect and the electron system with the Aharonov-Bohm effect. The diversity of

non-metallic materials including semiconductors, dielectrics, and magnetic materials has

been utilized in conventional optics. We believe that focusing on non-metallic materials in

NFO promotes further development both conceptually and technically.

Calculation details. Here we provide the calculation details, including the derivation of

the unfamiliar relationship (28) between two types of dipole transition matrix elements.

(i) Derivation of the microscopic constitutive equations, (1) and (2). The incident scalar

and vector potentials, ∆φ(r, t) and ∆Ai(r, t), are assumed to be monochromatic with the

angular momentum ω, and are expressed using the Coulomb gauge and LWA, as follows:

∆φ(r, t) = ∆φ(r) cosωt =
(

∆φ(0)−∆E(ℓ)(0) · r
)

cosωt , (11)

∆A(r, t) = ∆A(r) sin(ωt+ ξ) = − 1

ω
∆E(t)(0) sin(ωt+ ξ) , (12)

where and ξ is the phase difference between the two incident potentials. The nanostructure

is assumed to be a robust light source, which is not affected by the target material, and the

electromagnetic field is assumed to be a classical field.

Using a spinless one-electron system, let us evaluate the induced charge and current

densities caused by the coexisting incidences of the scalar and vector potentials. The total

Hamiltonian is as follows:

Ĥ =
1

2m

(

~

i

∂

∂xi(t)
− qAi(x(t), t)

)(

~

i

∂

∂xi(t)
− qAi(x(t), t)

)

+ qφ(x(t), t) , (13)

where t is time, x(t) is the position of the electron, and q(= −e), m are the electron charge

and mass, respectively. The perturbation Hamiltonian is given by

∫

d3r
(

ρ̂(r, t)∆φ(r, t)− ĵi(r, t)∆Ai(r, t)
)

, (14)

where ρ̂(r, t), ĵi(r, t) are the Heisenberg operators of the charge and current densities defined

as

ρ̂(r, t) = qδ3(r− x(t)) , (15)

ĵi(r, t) =
q

2m

{(

~

i

∂

∂xi(t)
− qAi(x(t), t)

)

δ3(r− x(t)) + δ3(r− x(t))

(

~

i

∂

∂xi(t)
− qAi(x(t), t)

)}

.

(16)
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The linear response theory leads to the operators of the induced charge and current densities,

as follows:

∆ρ̂(r, t) =

∫

t

−∞

dt1

∫

d3r1

{

1

i~

[

ρ̂(0)(r, t) , ρ̂(0)(r1, t1)
]

∆φ(r1, t1)

− 1

i~

[

ρ̂(0)(r, t) , ĵ
(0)
i1

(r1, t1)
]

∆Ai1(r1, t1)

}

, (17)

∆ĵi(r, t) =

∫

t

−∞

dt1

∫

d3r1

{

1

i~

[

ĵ
(0)
i

(r, t) , ρ̂(0)(r1, t1)
]

∆φ(r1, t1)

− 1

i~

[

ĵ
(0)
i

(r, t) , ĵ
(0)
i1

(r1, t1)
]

∆Ai1(r1, t1)

}

− q

m
ρ̂(0)(r, t)∆Ai(r, t) ,

(18)

where ρ̂(0) and ĵ(0) are the charge and current density operators, respectively, in the non-

perturbed system. The last term in (18) originates from the non-relativistic nature of the

system and is needed to maintain the charge conservation law.

Evaluating the expectation value using the ground state and substituting (11) and (12)

leads to (1) and (2), in which the causes of the responses are the two types of electric fields

and their temporal derivatives, defined as

∆E
(ℓ)
j
(0, t) ≡ ∆E

(ℓ)
j
(0) cosωt , ∆E

(t)
j
(0, t) ≡ ∆E

(t)
j
(0) cos(ωt+ ξ) , (19)

∆Ė
(ℓ)
j
(0, t) ≡ ∂

∂t
∆E

(ℓ)
j
(0, t) , ∆Ė

(t)
j
(0, t) ≡ ∂

∂t
∆E

(t)
j
(0, t) . (20)

In the above, no magnetic response appears because it is the higher order in the LWA[16,

19]. Cho derived a Taylor series of the non-local response function[20] under the LWA, and

assigned the electric permittivity and magnetic permeability in the MCE as the term of

order O(ka)0 (the leading order) and O(ka)2, respectively, where ka ≪ 1, 2π/k is the light

wavelength, and a is the representative size of the material.

Furthermore, he pointed out that the MCE is irrational because the separability of the

electric and magnetic responses and the term of order O(ka)1 appears in a chiral symmetric

system, including a NF optical system with a low-symmetric nanostructure. The present

work is concerned with another type of irrationality, which appears in the electric response

(the leading order from the viewpoint of Cho) in NFO under a non-resonant condition.

(ii) Derivation of the expressions for susceptibilities, (3), (6) and (7).

To obtain these formulas using the two-level model, we take the expectation values of (17)
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and (18) using the ground state, ϕ0(r), and insert the projection operator [ the left side of

the second equation in (21)], assuming that the two orbitals are real functions, and form the

normalized orthogonal complete set:

∫

d3r ϕm(r)ϕn(r) = δmn ,
∑

m

ϕm(r)ϕm(r
′) = δ3(r− r′) , (21)

where ϕm(r) satisfies,

Ĥ(0)ϕm(r) = ~ωm ϕm(r) , (m = 0, 1) . (22)

Having real orbitals infers even temporal parity, such that there is a null magnetic field

in the non-perturbed system or null vector potential in the non-perturbed Hamiltonian.

Furthermore, we use the well-known linear relationship between the two types of dipole

transition matrix elements,

Ci ≡
∫

d3r (∂iϕ1(r)ϕ0(r)− ϕ1(r)∂iϕ0(r)) =
2m

~2
~∆ω1Di . (23)

Equation (23) is derived from the matrix element of the Heisenberg equation for dipole

charge density:

∂

∂t
rjρ̂

(0)(r, t) =
1

i~

[

rj ρ̂
(0)(r, t) , Ĥ(0)

]

, (24)

using ρ̂(0)(r, t) = e−
Ĥ

(0)
t

i~ ρ̂(0)(r, 0)e+
Ĥ

(0)
t

i~ , the projection operator, (21) and (22).

(iii) Derivation of the spatial average of the susceptibilities, (9) and (10). These following

replacements in (3), (6) and (7) lead to (9) and (10):

ϕ0(r)ϕ1(r) −→ 1

V

∫

d3r ϕ0(r)ϕ1(r) = 0 , (25)

∂iϕ1(r)ϕ0(r)− ϕ1(r)∂iϕ0(r) −→ 1

V

∫

d3r ∂iϕ1(r)ϕ0(r)− ϕ1(r)∂iϕ0(r) =
1

V Ci , (26)

ϕ0(r)ϕ0(r) −→ 1

V

∫

d3r ϕ0(r)ϕ0(r) =
1

V . (27)

To derive (10), we additionally use the trade-off relationship between the two types of dipole

transition matrix elements,

Di Cj = δi j . (28)
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This is effective in the two-level system with well-defined parity and derived from the

quantum-mechanical commutation relationship:

[ri ,
~

i
∂j ] = i~ δij , i.e., ri

(

~

i
∂j · · ·

)

+
~

−i
∂j (ri · · · ) = i~δij · · · . (29)

Inserting the projection operator between ri and ~

i
∂j , and eliminating the null integrals

caused by mismatched parity result in (28). From (23) and (28), Di and Ci are specified as

Di =
1

Ci
=

~√
2m ~∆ω1

. (30)

(We do not use (30) in this paper.)
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ドレスト光子系での電場の概念の破綻
A Logical Fallacy of Electric Field in the Dressed-Photon Systems
⃝坂野　斎 1、大津元一 2(1.山梨大院、2.ドレスト光子研究起点)

⃝Itsuki Banno1, Motoichi Ohtsu2 (1.Univ. of Yamanashi, 2.Research Origin of Dressed Photon)
E-mail: banno@yamanashi.ac.jp

川添，大津と共同研究者らは 2000年代以降，非金属を使った非共鳴条件下での近接場光学特有

の現象を発見，実用に供してきた．例えば間接半導体での高効率の発光 [1]をはじめ，不十分な光

子エネルギーによる光化学反応，周波数上方変換，禁制・非断熱遷移，巨大磁気光学効果などであ

る．これらの原因は電子系の励起，格子系の励起と結合した電磁場＝ドレスト光子 (DP；Dressed

Photon)と考えられる [2]．これらDP系における非共鳴条件の役割を理解するため，非金属物質の

電子系をスピンレス１電子２準位系にモデル化し，光源（light source）からの遠近，観測点（light

sink）からの遠近，共鳴か非共鳴かに従って光学系を８つに分類した．このうち，近接場入射条件

かつ近接場観測条件かつ非共鳴条件の下でのみ，応答関数の非共鳴応答項によって縦電場と横電

場に対する応答の違いが顕れる．これは，前の発表 [3]の詳細化であり，全電場が応答の原因みな

せないこと，誘電率と電場を用いる構成方程式の記述が破綻することを意味する．電場という概

念の破綻の起源は非相対論の性質，すなわち，ハミルトニアンの中でベクトルポテンシャル（クー

ロンゲージの下で横電磁場自由度）とスカラーポテンシャル（同じく縦電場自由度）の依存性が

異なることであり多電子系についても正しいはずである．

今まで電場を応答の原因として扱えない光学系の存在を認識できなかった理由は次である：(1)

この破綻が露わになるのは近接場入射かつ近接場観測かつ非共鳴条件下の場合だけで，通常の光

学で関心がある遠隔場入射または遠隔場観測または共鳴条件下の系の補償の系であること．(2)近

接場光学に限ってもプラズモニクスが対象とする金属を用いる系ではなく非金属（有限の励起エ

ネルギーをもつ物質）を用いる系であること．(3)多電子系のハミルトニアンでは縦電場の効果を

電荷間のクーロン相互作用に書き換えるため縦・横電場への応答の違いを理論的に見極めにくい

こと．

DP系の現象を説明するには電場という概念の破綻，非共鳴応答の考慮が重要と考えられる．

参考文献
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川添忠,杉浦聡,大津元一, ”高出力ホモ接合シリコンレーザーの作製”,応物講演会 (2017春 15a-F202-9);
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ドレスト光子系の反磁性電流
Diamagnetic Current in the Dressed-Photon Systems

⃝坂野　斎 1、川添　忠 2,3、大津元一 3(1.山梨大院、2.東京電機大、3.ドレスト光子研究起点)
⃝Itsuki Banno1, Tadashi Kawazoe2,3, Motoichi Ohtsu3

(1.Univ. of Yamanashi, 2. Tokyo Denki Univ., 3.Research Origin of Dressed Photon)
E-mail: banno@yamanashi.ac.jp

川添・大津らが行った非金属を用いた近接場光学系の非共鳴条件下での一連の実験は，通常の

光学系で見られない様々な現象をもたらし，その原因はドレスト光子（DP）と考えられる．１件

前の発表で近接場入射条件かつ近接場観測条件かつ非共鳴条件下で電場の概念，及び，電場と誘

電率を用いた構成方程式が破綻することを述べたが，川添・大津の DP系はこの条件下にある．

電場を応答の原因とみなせないので，私どもが開発した電磁ポテンシャルを原因として扱う単一

感受率 [1]による記述が適する．この理論ではスカラーポテンシャル（SP）を２体のクーロン相互作

用に書き換えず，ベクトルポテンシャル（VP）と対等に応答の原因として扱う．また，Heisenberg

演算子としての線型・非線型応答関数を作用積分の SP・VPによる汎関数微分で導出し，電荷保存

則とゲージ不変性を保証する．線型応答関数の Heisenberg演算子として次を得る：

χ̂
µ
µ1(x, x1) =

−q
mc2 δ̃

µ
µ1δ

4(x − x1) ĵ(in0) 0(x) +
1

iℏc2 θ(ct − ct1)
[
ĵ(in0) µ(x), ĵ(in0)

µ1(x1)
]
,

第１項が非共鳴項であり，VPのみを応答の原因とし，縦・横電場の応答の違い＝電場の概念の破

綻の原因である．交換子を含む第２項は時間積分によりエネルギー分母が現れ共鳴条件下で主要

となる．川添・大津らの非共鳴条件下の実験は第１項を強調する．特に双極子禁制条件下での量

子ドット系 [2][3]やフランク=コンドンの原理による非断熱遷移禁制条件下での光化学反応系 [4]

と間接遷移半導体の LED・レーザー系 [5]では共鳴項は０となり非共鳴項だけが応答に寄与する．

この非共鳴項の性質を調べるにあたり，電場の概念が破綻する先例としての超伝導体系と対応

づけることが有効に思われる．非共鳴項は超伝導の文脈では Londonの構成方程式であり，反磁性

電流を生みMeissner効果をもたらす．実際，印加される静磁場（クーロンゲージ下での時間に依

存しないVP）は BCS状態からの２電子状態励起（超伝導ギャップ）エネルギーに対して，究極の

非共鳴条件をみたし，さらに静磁場の波長は無限大ゆえ，究極の近接場入射条件，近接場観測条

件をも満たす．この類似をたよりに反磁性電流と DPの関係を調べていきたい．
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(Springer International Publishing, Switsland, 2016).
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Timelikeと Spacelikeな場の合成による停留 

状態のドレスト光子の数学的表現 

A mathematical expression of stationary dressed photon as a composite of timelike 

and spacelike fields 
○佐久間弘文 1、小嶋泉 1、大津元一 1 

○Hirofumi Sakuma 1, Izumi Ojima 1, and Motoichi Ohtsu 1 

1:ドレスト光子研究起点 

E-mail: sakuma@rodrep.ro.jp 

ドレスト光子（DP）を光子と対比した場合

の決定的な違いは、前者は①極度に局在化

した停留状態として現れ、②それは光と物

質場の相互作用の結果生じる“合成”場で

あるという点にある。また、量子場の基礎

理論 [1] によれば、相互作用する場の記述

には、4-momentum 


p  の時間的並びに空

間的 support の両者が必要である事が示

される。上記の二つの特性と量子場理論の

帰結として、著者らは、これまで扱われる

事の無かった空間的 support に対する具

体的表現としての Clebsch dual (CD) [2,3] 

場という概念を導入し、通常の電磁場を空

間的領域へと拡張し、その特性を調べた。

相互作用下にない CD 場それ自体は拡張さ

れた電磁場の基本モードとして振る舞う為、

相互作用により生じる複雑な場は、その基

本モードの重ね合わせに似たもので表現で

きるであろうと期待される [3]。今回の報告

では、問題を簡素化する為に、図１に示す

ような一つのナノ粒子の周りに生じる DP

場を考察の対象として、timelike な場と

spacelike な場が局所的に相互作用を行う

 

図１：ナノ粒子の周りに生じる DP場 

 

物理過程の特徴を捉えた“簡易素過程”な

るものを Clebsch parametreiztion で表現

したものを考えて、それによって DP の特

徴が如何にして再現されうるのかという事

を示す。DPは通常の光子のような自由場の

基本モードとして表現できない為に、その

量子論的な記述は未解決な問題として残っ

ているが、今回の発表では、古典場として

の Clebsch モデルの表現が、量子化された

調和振動子モデルで重要となる生成・消滅

演算子を用いた Hamiltonian の表現に如

何なる意味において“相似”的な形となり、

その中で、基本モードとしての CD 場が重

要となる事を説明する。

謝辞：本研究の一部は、（公財）光科学技術研究振興財団の研究助成による。 

[1] R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All that, Princeton Univ. Press, 2000 

[2] H.Sakuma, I. Ojima and M. Ohtsu, Appl. Phys. A (2017) 123:750. https://doi.org/10.1 

007/s00339-017-1364-9 

[3] H. sakuma, I. Ojima, M. Ohtsu, Dressed photons in a new paradigm of off-shell quantum fields. 

Prog. Quantum Electron. 55, 74-87 (2017) 
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量子ウォークモデルを用いた 

ドレスト光子エネルギー移動シミュレーション 

Simulation of Dressed Photon Energy Transfer based on Quantum-Walk Model 

㈱リコー1，長浜バイオ大 2，東大院工 3，ドレスト光子研究起点 4 

○三宮 俊 1，西郷 甲矢人 2，大津 元一 3,4 

Ricoh Co. Ltd.1, Nagahama Inst. Bio-Sci. Tech.2, Univ. of Tokyo3, Res. Origin Dressed Photon4 
○Suguru Sangu1, Hayato Saigo2, Motoichi Ohtsu3,4 

E-mail: suguru.sangu@jp.ricoh.com 

近年、ナノスケール領域において生じる特異

な光学現象が注目されている。例えば、間接遷

移型半導体であるシリコンの発光現象[1]、近

接場光エッチングによる原子レベル超平滑化

[2]、巨大磁気光学効果の発現[3]などの報告が

ある。これらの光学現象は従来光学理論におい

て常識的に扱われてきた光と物質のエネルギ

ー保存則、運動量保存則を破る「ドレスト光子」

描像、すなわち環境影響により質量をもった仮

想光子を仲介した現象として解釈されている。 

ドレスト光子の理論構築が数年来進められ

てきたが[4]、少数粒子のような理想物質と光

の相互作用を表現するに留まっており、ミクロ

系からマクロ系までを一貫して扱う解析手法

の提案が望まれている。このような状況におい

て我々は、量子ウォーク研究[5]とドレスト光

子の振る舞い（局在現象）との類似性に注目し、

ドレスト光子のエネルギー移動を離散量子ウ

ォークとして記述する試みを行った。本試行は

ナノフォトニクス研究で多用される Maxwell

方程式に基づく電磁界シミュレーションとは

異なり、ドレスト光子の存在を予め仮定した際

に現れるダイナミクスから支配方程式を探る

アプローチである。 

以降では、量子ウォークとしてのモデル化と、

数値解析事例について概説する。解析対象はミ

クロ系とマクロ系が連続的に繋がるプローブ

－プローブ構造とした。Fig.1 に示すように、

プローブ構造をドレスト光子が占有する格子

点で近似し、格子点間のホッピング伝導により

エネルギー移動を表現した。本モデルでは、外

界またはプローブ自身に存在する（自由）光子

場とドレスト光子の結合および散逸（すなわち

リザーバ）が重要であり、取り扱う系に依存し

たリザーバを導入する必要がある。本系では、

プローブ－プローブ構造が光の波長に対して

十分に小さいという仮定の下、系全体の集団的

な励起と光子場が相互作用するとした。Fig. 2

はドレスト光子の格子点位置に対するポピュ

レーション時間平均値を表わしており、空間を

隔てたプローブ構造の先端にドレスト光子の

局在が確認できる。（ただし、物理状況把握の

ため、コヒーレントな励起およびプローブ端か

らのエネルギー散逸は、本計算では無視してい

る。）巨視的なモードが散逸する一方で、長寿

命（電気双極子禁制）のドレスト光子成分のみ

がプローブ構造先端に停留すると解釈できる。 

講演では、プローブ形状の最適化や従来

Maxwell 方程式による描像との対応について

も議論したい。 

[1]  川添・他, 光学 43巻 8号 (2014) 366. 

[2]  八井, OPTRONICS 35(413) (2016) 204. 

[3]  N. Tate, et.al., Sci. Rep. 5 (2015) 12762. 

[4] 例えば、大津, 「ドレスト光子」(朝倉書店, 

2013). 

[5]  今野,「量子ウォーク」 (森北出版, 2014). 

 

Fig. 1: プローブ－プローブ構造のモデル 
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Fig. 2: ポピュレーションの局在現象 

（プローブ端でのドレスト光子局在） 
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シュテファンボルツマン則による Si-LED の注入電流依存性の考察 
Consideration of injection current dependence of Si-LED using Stefan-Boltzmann law 

電機大 1，東大院工 2，ドレスト光子研究起点 3, ○川添 忠１、大津元一 3,4 

TDU1, Univ. of Tokyo2, Res. Origin Dressed Photon3, ○T. Kawazoe1, M.Ohtsu2,3 

E-mail: kawazoe@mail.dendai.ac.jp 

我々は間接遷移型半導体であるシリコン(Si)を用
いた LED, レーザーなど発光素子の開発を行って
いる[1-4]。その発光原理は通常の直接遷移過程
半導体を用いた素子とは異なりドレスト光子フォノ
ンと呼ばれる中間状態を経る。 
 Si-LED は DPP アニールという方法を用いて
作製される。この方法では順方向に印加する電
流が起こすジュール発熱によるドーパントの
拡散促進とそれを抑制する発光（誘導放出）の
バランスによって特定のドーパント配列がで
きる事を利用している。ドーパントは数 nm～
数十 nm といった非常に近い距離に隣接するた
めこの過程によってドーパントの規則的な配
置が完成するためには局所的に大きな温度差
が生じる必要がある。 
 Figure1にアニール途中の Si-pn 接合素子の EL

スペクトルを示す。図中の発光スペクトルには大き
分けて2 成分が存在し、極めて注入電流依存性の
大きい成分とそうでない成分が混在して見られ、通
常の分光計測でこれらを分離観測する事は不可
能であった。注入電流依存性の大きい成分は Si
のバンド間遷移に起因する成分であり、このシフト
量から 400℃以上温度変化があると予想される。
一方、注入電流によるシフト量の小さい成分は
50℃以下の温度変化に相当するピークシフトしか
示さなかった。これらの違いはまさに局所的な温度
（差）が存在することを意味している。 

Fig.1 
次に DPP アニールされた Si-LED の注入電流

依存性を Fig.2,3 示す。閾値後に発光強度は急速
に強くなり、その注入電流依存性はほぼ 4 乗に比
例する事が分かった(図中破線)。 
 また、その電流領域での EL 発光スペクトル形

状は Fig.3 に示すようにほとんど変わらない。注入
電流と素子発熱量はほぼ比例するので素子温度
は注入電流に比例すると考えられる。すなわち立
ち上がり以後の発光強度は素子温度のおよそ4乗

に比例すると考えられる。これは黒体放射におけ
るシュテファンボルツマン則で理解すると分か
りやすいが、EL 発光スペクトル形状がほとん
ど変わっていない。 

Fig.2 
 

Fig.3 
 この理由を以下のように考えている。DPP を介し

た発光においても波数保存則を満たすためのフォ
ノン放射が必要である。そしてフォノン(光子エネル
ギー<100meV)は赤外線として放射される。この放
射率は発光部の局所的な温度決定され、温度の 4
乗すなわち、注入電流の 4 乗に比例する。フォノン
放率と電子正孔の対消滅による発光確率は比例
するので EL 強度は注入電流の 4 乗に比例する。 
発表では上記の過程のより詳細な検討を行う。 

[1] T. Kawazoe & M. Ohtsu, Appl. Phys. A, 115, 
127-133, (2014). 
[2] T. Kawazoe, et al., Appl. Phys. B-Lasers and 
Optics, 98, 5-11 (2010). also 107, 659-663 (2012). 
[3] H. Tanaka, et al., Appl. Phys. B-Lasers and Optics, 
108, 51-56 (2012). 
[4] 川添忠、橋本和信、杉浦聡、大津 元一、2017
年第 78 回秋季応用物理学会、福岡 講演番号
7a-A405-5. 

1.0 1.1 1.2
0

30000

60000

 

Photon Energy (eV)

Band edge emission

EL:DPP State

N
o

rm
a

liz
e

d 
E

L
 in

te
n

si
ty

1.0 1.1 1.2
0

30000

60000

 

Photon Energy (eV)

Band edge emission

EL:DPP State

N
o

rm
a

liz
e

d 
E

L
 in

te
n

si
ty

800 1000 1200 1400 1600 1800

100

1000

10000

  

 

Wavelength (nm)

E
L
 P

o
w

e
r 

(a
.u

.)

第79回応用物理学会秋季学術講演会 講演予稿集 (2018 名古屋国際会議場 (愛知県名古屋市))19a-437-8 

© 2018年 応用物理学会 03-182 3.12



ドレスト光子定数の存在可能性とその意味するもの 

On the existence of dressed photon constant and its implication 
○佐久間弘文 1、小嶋泉 1、大津元一 1,2 

○Hirofumi Sakuma
 1
 , Izumi Ojima

 1
, and Motoichi Ohtsu 

1,2
 

1:ドレスト光子研究起点、2:東京大学大学院工学系研究科総合研究機構 

E-mail: sakuma@rodrep.ro.jp 

本発表は、前回（2017年秋季大会）報告し

た spacelike Clebsch dual field （SCDF）

[1,2,3]による新たなドレスト光子（DP）モ

デルの構築に関する研究の続報であり、今

回の主テーマは、「DP の帰結する物理定数

の存在」である。 SCDF の基本式は

spacelike Klein Gordon (SKG) であるが、

超光速「粒子」タキオン解は不安定 [4] で

ある事が知られており、SKGに現れる長さ

の次元を持つ定数は、timelike な KG に対

応する様な局在化した個別粒子の質量に対

応するものではなく、ドレスト光子の出現

する状況全てに関わる普遍性を有すること

が期待される。SCDF の基本式から、

Clebsch photonは Regge polesとして現れ

る共鳴ハドロンの寄与するポテンシャル項

の特性を持ち、その“基底状態”は spacelike

な性質より加速膨張を引き起こす宇宙項

（反重力）と類似した機能を担うため、こ

の文脈での DP 研究は広い分野に影響を及

ぼす可能性がある。今回の報告では、図１

に示す非共鳴光を光源とし、金属膜非塗布

ファイバープローブの先端の DP を用いた

光化学気相堆積法によるナノパターン形成

実験[5]で得られた DP の半値全幅を「DP

定数」と見てスケール解析を実行すると，

宇宙論における宇宙項にオーダー的に近い

効果が再現されること、更に，“基底状態”

ではない一般の場合の DP dynamics の本

質を理解する上で重要な役割を演ずる数理

的視点を提示する。 

    

図１：堆積された Zn のナノパターン。光

源 波 長 は 各 々  325nm(a), 488nm(b), 

684nm(c)

[1] 佐久間弘文、小嶋泉、大津元一、第 78回応用物理学会秋季学術講演会(2017 年 9月、福

岡) 7a-A405-10. 

[2] H.Sakuma, I. Ojima and M. Ohtus, Appl. Phys. A (2017) 123:750. https://doi.org/10.1 

007/s00339-017-1364-9 

[3] 小嶋泉、量子場とミクロ・マクロ双対性、平成 25年、丸善出版 

[4] Y. Aharonov, A. Komar, and L. Susskind, Phys. Rev. 182, 1400-1403 (1969) 

[5] T. Kawazoe, K. Kobayashi, S. Takubo, and M. Ohtsu, J. Chem. Phys. 122, 024715 (2005) 
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Si 発光ダイオードの光出力 1W 動作と電流依存性 

Operation with 1W-optical output of Si-LED and current dependence 
東電大 1，東大 2 ○川添 忠 1，大津元一 2 

TDU1, University of Tokyo2 ○Tadashi Kawazoe1, Motoichi Ohtsu2 
E-mail: kawazoe@mail.dendai.ac.jp 

 

我々が開発した Si を用いたホモ接合 LED はフォノン

を含む準粒子であるドレスト光子の状態を介して発

光する[1,2]。これまでの電流注入による発光計測で

は素子冷却が不十分であったため最大 200mW が限

界であった[3,4]。今回、素子の電極を改良し、動作

時の素子温度が液体窒素温度まで耐えるように改良

を加え光出力パワー>1W を達成する事に成功した。

また光出力パワーの注入電流依存性が明瞭な閾値

を持ち、閾値以上の電流では光パワーが電流の 4 乗

に比例する事が分かったのでその機構について報

告する。 

Si-LED はアンチモン(Sb)がドープされた基板にボ

ロン(B)をイオン打ち込み法によって注入する事によ

って得られる。B の打ち込みエネルギーは 700KeV と

10eV である。このようにしてして得られた基板に

Cr/Au(30/300nm) の メ ッ シ ュ 電 極 お よ び

Cr/Al/Au(30/200/300nm)のべた電極を作製し 1mm

×1mm の寸法に切り出した。切り出した Si チップを

PCB 基板にボンディングして 1 素子とし、室温にて

DPP アニーリング（光源：アニール波長 1342nm,パワ

ー 2W, 電流：1.3A）を行った[1,2]。 

Fig.1 

この DPP アニールの工程による Si ダイオードは非常

に光出力パワーの大きな LED として機能するように

なる。Fig.1に作製した Si-LED を 100mW 程度で動作

させた時の赤外写真を示す。Si-LED の隣には 2mW

の市販赤外 LED を最大定格で動作させ比較として

撮影してある。 

 この時の EL スペクトルを Fig.2 に示す。発光スペク

トル帯域は 1000nm～2400nm 程度まで広がっている

が、DPP アニールして作製した素子は特有の構造を

持つ。素子の動作温度は液体窒素温度温度であっ

た た め 、 1342nm の ア ニ ー ル 光 に よ る 発 光 帯

(EBG-3phonon)は温度依存性により短波長側にシフト

し 1270nm 付近に現れている。またその整数倍である 

EBG-6phonon の位置および EBG-9phonon の位置に発

光帯が確認された。 

Fig.2 

 次に異なる温度にて計測した光出力パワーの電流

依存性を Fig.3 に示す。素子温度が低いほど明瞭に

かつ低電流位置に閾値が現れ、光出力パワーは閾

値以下では電流の 2 乗に、閾値以上では電流の 4

乗に比例する結果を得た。電流の 2 乗に比例する領

域はオージェ散乱過程の寄与であることを既に報告

した[3]。4 乗に比例する領域のはじまる閾値の電流

密度は 5.8A/cm2 であり、同様の基板構造持つ Si レ

ーザー閾値に近い値であった。これは誘導放出過程

が関与している事を示すものである。 

Fig.3 

 

東京大学 B. Thubthimthong 氏には実験面でご協力

を頂いたので感謝の意を表します。 
[1] M. Ohtsu, Silicon Light-Emitting Diodes and Lasers 

(Springer, 2016).  

[2] T. Kawazoe, M. A. Mueed, and M. Ohtsu. Applied 

Physics B: Lasers and Optics 104.4 (2011): 747-754.  

[3] J. H. Kim, T. Kawazoe, and M. Ohtsu. Applied Physics 

A, 123.9 (2017): 606. 

[4] B. Thubthimthong, T. Kawazoe, and M. Ohtsu, 第 78

回応用物理学会秋季学術講演会(2017, 福岡) 7a-405-4.  
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　近接場光学における非共鳴効果の理論 III:
非線形応答理論によるドレスト光子の基礎づけの試み，ゲージ条件の検討

Theory of Non-resonant Effect in Near-filed Optics III: Approach to a Base of Dressed
Photon employing Non-linear Response Theory under a Preferable Gauge Condition

⃝坂野　斎 1，大津元一 2,3

(1. 山梨大院，2. 東大院工，3.ドレスト光子研究起点)
⃝I. Banno1, M. Ohtsu2,3

(1. Univ. of Yamanashi, 2. Univ. of Tokyo, 3. Research Origin of Dressed Photon)
E-mail: banno@yamanashi.ac.jp

川添・大津らは非共鳴条件下での様々な実験 [3,4]によりドレスト光子が原因と目される近接場
光学（NFO）特有の現象を発見，実用に供してきた．理論的には多フォノンが関わるモデルで説
明され [5]，近頃，光学フォノンが関わる実験的証拠が得られている [6]．
ドレスト光子は光の波長程度以下のサイズ (a)の空間での電磁場の一般的存在形態として，詳細
なモデルに依らずに理解できる．このような「光」を観測できたら，それには ℏ/a程度の運動量
の不確定さが伴う．この「光」は，真空中の光やバルク物質中の光＝オンシェルの光の分散関係
から外れたオフシェルの光＝ドレスト光子であり，その存在は環境との相互作用に支えられてい
る．川添・大津の実験はフォノンを含む環境の自由度と相互作用しているオフシェルの光＝ドレ
スト光子を積極的に利用するために非共鳴条件を使っていると解釈できる．
本理論は，非共鳴条件下での電子と電磁場環境との相互作用を明らかにしてドレスト光子を第
１原理から基礎付けることを目的としている．そのために私たちは光源であるナノ構造近傍の多
電子系というNFO系を記述するのに相応しい線形・非線形応答関数を第１原理から定式化してき
た [1]．その応答関数は，NFO系に共存するスカラー・ベクトルポテンシャル（SP ϕ・VP A）を
応答の原因として対等に扱い，結果である誘導電荷・電流密度と関係づける．n次の非線形応答関
数は作用積分の ϕ・Aによる (n + 1)階の汎関数微分として Heisenberg演算子の形式で得られ，電
荷保存則とゲージ不変性を保証する．
この方法により非共鳴条件下のNFO系には，線形・非線形応答関数にAにより強調される寄与
があり，誘電率による記述が破綻することを示し，また，前回は非線形感受率演算子の漸化式を
検討し，電磁ポテンシャルと感受率演算子を再定義して非共鳴条件に相応しい描像を導いた [2]．
この再定義はもともとの SPϕに，非相対論下でスカラーとなるVPの２乗A2に比例した項が付加
する非線形変換である．これにより光学フォノンに伴う電磁場や局所磁場など環境に存在するVP
が SPと同じ資格で応答に関われ，NFO系で顕現するドレスト光子の記述として相応しく思える．
この SP・VPの非線形変換では特定のゲージが理論上好ましいものとして選択される可能性があ
り，本講演ではこの点を議論する．
通常の光学系では ϕ（縦電場）を荷電粒子間のクーロン相互作用に転化して応答の原因として
扱わないところ本理論ではNFO系の応答の原因として考慮することにより以上の議論が可能にな
る．実はNFOは SPϕを介して多電子問題と不可分である．クーロン相互作用こそは物質の多様な
存在形態の原因であり，NFO系の非共鳴条件下ではその変調により，ドレスト光子＝オフシェル
の光が活躍する新しいパラダイムがあると私たちは考えている．
謝辞 : 本研究の一部は（公財）光科学技術研究振興財団の研究助成を受けています．
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Abstract

Paradoxical appearance of negative metrics in the processes of emergences will
be analyzed from the viewpoint of Morse theory, induced representations and of
imprimitivity systems.

1 How to control inclusion relations

The essence of the present notes is to discuss the following issues which have been
triggered by the requirement for a theoretical framework to treat Dressed Photons:

how to fill the gap between Macroscopic Phenomena & Microscopic Theory,

on the basis of Micro-Macro Duality in Quadrality Scheme,

comined with Saddle-Point Instability,

Through the following examples, Lorentz symmetry/ Regge structure/ Dressed pho-
tons/ Coulomb modes/ Tomita-Takesaki modular theory for statistical mechnaics, con-
trolling mechanism will be explained on the basis of induced representations.

Existence of quantum modes with “indefinite metric” breaks the consistency of
theory at Micro level, as is well known by the difficulties caused by longitudinal pho-
tons. Therefore, one always tries to avoid longitudinal photons in QED.

However, this is in contradiction to the existence of Coulomb modes in Macro world!!

To understand such contradictory situations, we need first re-examine the concept
and phenomena of symmetry breaking.
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2 Symmetry Breaking creates Symmetric Space

When symmetry of the system described by a group G is broken up to unbroken sub-
group H, a homogeneous space G/H emerges in sector classifying space. In this sit-
uation, G/H is shown to be a symmetric space with many nice properties [Hel],
according to the following criterion for symmetry breaking.

For this reason, induced representation IndG
H [Mackey] to describe the broken

symmetry G on the sector classifying space G/H as a symmetric space has a strong con-
nection with automorphic forms and zeta functions playing important roles in number
theory.

The mutual relation between the quadrality scheme and the groups to describe sym-
metries can be depicted as follows:

Spec=
classifying space

= G/H : Visible Macro

Emergence ↗ »¼ ↑
(Family of)

States
¿ Algebra x G

: Micro-Macro
boundaries : t-ch

»¼ ↗ ↑
Dynamics x H : Invisible Micro: s-ch

2.1 Symmetry Breaking

General definition of symmetry breaking [IO03]:

Definition (Symmetry Breaking): Let X be a C∗-algebra describing quantum fields
with an automorphic action τ :X x

τ
G of a Lie group G on X and (π, H) be a represen-

tation of X . If the spectrum Spec(Zπ(X )) of its center Zπ(X ) = Z(π(X )′′) is pointwise
G-invariant (almost everywhere w.r.t. the central measure), the symmetry (G, τ) on X
is said to be unbroken in (π, H) and broken otherwise.

The reason for complicated situations concerning symmetry breaking in QFT is due to
such a contrast between quantum systems with finite vs. infinite degrees of freedom:
while the use of a unitary representation U of G leads automatically to the unbroken
symmetry (which is always the case for systems with finite degrees of freedom), the very
non-existence of U realizable only in those with infinite degrees of freedom characterizes
the broken symmetry. This is the reason why we need G-actions both in C∗- and W∗-
versions in the above criterion for symmetry breaking.

2.2 Induced Representation from Unbroken to Broken

To streamline the discussion, we define “augmented algebra” [IO03] by a (C∗-)crossed
product X o (̂H\G) =: X̂ of X with the dual (̂H\G) of (G/H), which allows uni-
tary implementation of broken G at the expense of non-trivial center Zπ(X̂ ) with
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Spec(Zπ(X̂ )) = G/H in the representation of X̂ . Thus the corresponding von Neumann
algebra π(X )′′ can be taken as (π o Uτ )(X̂ )′′ in the above definition. The existence of
a central spectrum as Spec(Zπ(X̂ )) = G/H suggests relevance of induced represen-
tations and imprimitivity [Mackey] involving the following exact sequences:

Rep(G/H) ↪→ Rep(G)
IndG

H

¿ Rep(H),

H À
(IndG

H)∗
G ³ G/H.

The bigger group G can be viewed as a principal H-bundle over base space G/H =
Spec(Zπ(X̂ )) as sector classifying space, and dual map (IndG

H)∗ of IndG
H (sometimes

called “Wigner rotation”) plays the role of gauge connection.

2.3 Physical Meaning of Central Spectrum

Note here that the starting point of our present discussion is just a C∗-dynamical system
X x

τ
G given by C∗-algebra X of quantum fields acted upon by a Lie group G of the

symmetry of the system. In a sense, however, spacetime background.of the dynamical
system X x

τ
G without being mentioned at the beginning, has emerged automatically

in the form of G/H as a result of the symmetry breaking from G to H. In this sense,
the essence of symmetry breaking is crucial and universal for general understanding of
the meaning of the above quadrality scheme for Micro-Macro duality.

For this purpose, we remark first such a crucial point that the center of repre-
sented algebra π(X̂ )′′ consisting of Macro variables of the system as low energy modes
has such a spectrum as Spec(Zπ(X̂ )) = G/H. Its non-trivial motion is driven by the
action of G to exhibit the essence of symmetry breaking as the “infrared instability”.
Arbitrary representations of X̂ are decomposed into the direct sum of G-unbroken fac-
tor representations and G-centrally ergodic non-factor representations (the latter ones
corresponding to symmetry breaking). according to which a “phase diagram” can be
drawn on the central spectrum.

2.4 Symmetry Breaking and Symmetric Spaces

Symmetry Breaking of Lie group G with Lie algebra g creates an interesting Micro-
Macro interface between Micro level invariant under unbroken Lie subgroup H with Lie
algebra h and visible Macro level of sector classifying space M = G/H.

M : formed in the emergence of condensed order parameters which parametrize the
so-called “degenerate vacua” arising from symmetry breaking.

According to the criterion for symmetry breaking, M = G/H becomes a symmet-
ric space (É. Cartan) [Hel] whose Lie structure m = g/h is characterized locally by the
relation [m,m] ⊂ h [RIMS2014].
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Here commutator [m,m] of tangent vectors in M describes holonomy effect of the
curvature of M in loop motions on M . Since a trajectory forming a loop returns to
its starting point on sector classifying space M , net effect of the loop reduces to such
components of transformation group as fixing the sector unchanged, being contained in
unbroken symmetry corresponding to h, which can be expressed as Macro loops [m,m]
penetrated by Micro arrows in h.

2.5 Examples of Symmetric Spaces: Chiral symmetry, Lorentz
boosts & Second Law of Thermodynamics

1) Typical example of symmetry breaking yielding symmetric space structure can be
found in chiral symmetry of current algebra:

[V, V ] = V, [V,A] = A, [A,A] = V,

(V ∈ h: vector currents, A ∈ m: axial currents).

2) For Lorentz group L↑
+ as G with rotation group SO(3) as unbroken H, we can

find a symmetric space M = G/H ∼= R3 given by the space of all Lorentz frames
connected by Lorentz boosts. In fact, relations [h, h] = h, [h,m] = m, [m,m] ⊂ h with
h := {Mij ; i, j = 1, 2, 3, i < j}, m := {M0i; i = 1, 2, 3} can be extracted from the Lorentz
Lie algebra:

[iMµν , iMρσ ] = −(ηνρiMµσ − ηνσiMµρ − ηµρiMνσ + ηµσiMνρ).

3) The essence of characterization of symmetric spaces by “Macro loops [m,m] pen-
etrated by Micro arrows in h” can be exhibited directly in Macro world in the form
of second law of thermodynamics. Its mathematical essense can be seen in the
following exact sequence1

∆′Q
q

↪→ ∆E = ∆′Q + ∆′W
p
³ ∆′W,

i.e., Im(q) = ker(p),

This is the same as the relation h ↪→ g ³ m = g/h to characterize Lie structure of ho-
mogeneous space M = G/H.

The cyclic processes of a heat engine correspond to loops on the thermodynamic
phase space M described by thermodynamic variables and holonomy [m,m] associated
with such cycles describes the incoming & outgoing heat between the heat engine & the
external world in combination with the relations [m,m] ⊂ h and ∆E = ∆′Q+∆′W = 0:
−∆′W = −[m,m] = ∆′Q > 0, in which the characterization of M as a symmetric
space [m,m] ⊂ h corresponds to the second law of thermodynamics in Kelvin’s
version!

1Equality Im(q) = ker(p) menas that the vanishing energy balance (ker(p)) taken as the visible work
is equivalent to the input-output of the heat (Im(q)).
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3 Sector Bundle & Holonomy

In the case of symmetry breaking of G up to its unbroken compact subgroup H, the
sector structure should be understood in two levels, one with the totality Ĥ of irreducible
rep.’s of unbroken subgroup H of G, and the other with G/H as the broken part of G.
To unify these two levels, it is convenient to introduce the concept of a sector bundle:

Ĥ ↪→ G ×
H

Ĥ ³ G/H.

In this context we can see the physical origin of space-time concept in its physical
emergence process [IO10].

For simplicity, we assume here that a group G of broken internal symmetry be
extended by a group R of space-time symmetry (typically translations) into a larger

group Γ = R ·× G defined by a semi-direct product of R & G with Γ/G = R.
In this case, the sector bundles have a double fibration structure:

Ĥ ↪→ G ×
H

Ĥ ↪→ Γ ×
G

(G ×
H

Ĥ) = Γ ×
H

Ĥ

↓ ↓
G/H Γ/G = R

.

3.1 Holonomy along Goldstone condensates

Thus, we see that Spec= sector-classifying space has three different axes on different
levels:

i) sectors Ĥ of unbroken symmetry H,
ii) degenerate vacua G/H = M due to broken internal symmetry [IO03, IO04],
iii) Γ/G = R as emergent space-time [IO10] in broken external symmetry.

These axes appear geometrically as a series of structure group contractions H ←
G ← Γ of principal bundles PH ↪→ PG ↪→ PΓ over R, specified by solderings as bundle
sections, R ρ

↪→ PG/H = PH ×
H

(G/H), R τ
↪→ PΓ/G = PG ×

G
(Γ/G) = PG ×

G
R, which

correspond physically to Goldstone modes.

3.2 Helgason duality with Hecke algebra

We see the duality between Helgason duality [HRad] K\G ↔ G/H in
↗ K\G/H ↖

K\G ↔ G/H

↖
G

↗
with Radon transform & Hecke algebra K\G/H

and the algebraic structure of “augmented algebras” [IO03] for symmetry breaking
as “stereo-graphic” extension of planar diagrams:
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G/H ↙ XH = X̃G ↘H

↙ ⇓ ↘
X̃H ⇓ X
↓H ↘↘ ↙G/H↓
↓ X̃ ↓
↓ ↙ ⇓ ↘↘ ↓

Ĥ\G ↪→ Ĝ ³ Ĥ

À

R ↙ Oρ = OH
d ↘H

↙ ⇓ ↘
A(R) ⇓ Od

↓H ↘↘ ↙R↓
↓ X (R) ↓
↓ ↙ ⇓ ↘↘ ↓
R̂ ↪→ Γ̂ ³ Ĥ

.
[same kinds of
lines constitute
exact sequences]

Similar push-out diagram appears also in Doplicher-Roberts reconstruction [DR90]
for field algebra X (R) with unbroken symmetry

3.3 Symmetric space structure = Maxwell-type equation due to
symmetry breaking

Symmetric space structures of G/H = M & Γ/G = R arising from symmetry breaking
are characterized by the equation [m,m] ⊂ h to connect holonomy [m,m] (in terms of
curvature) with unbroken generators in h.

It is really interesting to note that this feature is shared in common by Maxwell
& Einstein equations of electromagnetism and of gravity, respectively:

LHS: (curvature Fµν or Rµν) = (source current Jµ or Tµν) : RHS,

which can be seen by noting that all the quantities [m,m], Fµν and Rµν on LHS
represent holonomy terms and that those on RHS are associated with generators h of
unbroken subgroups.

In the usual context (related to the 2nd Noether thm), Maxwell equation is un-
derstood as an identity following from the gauge invariance of “action integral” under
local gauge transformations. In contrast we have no such classical quantities as action
integrals nor Lagrangian densities defined in our algebraic & categorical formulation of
quantum fields.

3.4 Possibility for Dressed Photon equations?

Without such quantities as “action integrals”, symmetry breaking criterion with [m,m] ⊂
h tells us that Maxwell-type equation with curvature term [m,m] on the left-hand side
and the internal symmetry term h on the right-hand side is just a consequence of symme-
try breaking of local gauge invariance into spacetime and internal symmetries. Putting
the Clebsch-dual electromagnetic field Sµν due to Sakuma [SOO] in the place of [m,m],
therefore we can learn that Sµν represents the condensation effect of dressed photons.
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3.5 Galois Functor in Doplicher-Roberts reconstruction of sym-
metry

We recall here how Doplicher & Roberts (DR) [DR90] recovers internal symmetry group
from DR category T of local excitations as group-invariant data.

Objects of T : local endomorphisms ρ ∈ End(A) of observable algebra A, selected
by DHR localization criterion [DHR] π0 ◦ ρ ¹A(O′)

∼= π0 ¹A(O′), and
Morphisms of T : T ∈ T (ρ → σ) ⊂ A intertwining ρ, σ ∈ T : Tρ(A) = σ(A)T .

The group H of unbroken internal symmetry arises as the group H = End⊗(V ) of
unitary tensorial (=monoidal) natural transformations u : V → V with the represen-
tation functor V : T ↪→ Hilb to embed T into the Hilbert-space category Hilb with
morphisms as bounded linear maps.

3.6 Galois Functor in Category & local gauge invariance

Recall that a natural transformation u : V → V is characterized by the commutativity

diagrams:
V (ρ)

uρ→ V (ρ)
V (T ) ↓ ª ↓ V (T )
V (σ) →

uσ

V (σ)
, namely, V (T )uρ = uσV (T ) for T ∈ T (ρ → σ).

Our simple proposal here is to define a local gauge transformation τu(V ) of functor
V by τu(V )(T ) := uσV (T )u−1

ρ corresponding to a natural transformation u ∈ H =
End⊗(V ) [RIMS2013, RIMS2014].

Then, the above equality, V (T )uρ = uσV (T ), can be reinterpreted as local gauge
invariance τu(V ) = V of functor V under local gauge transformation V → τu(V ) induced
by a natural transformation u ∈ H = End⊗(V ), as has been visualized in the context
of lattice gauge theory.

4 Trinity relation of Saddle point, Indefinte metric
& Non-compact group

For the purpose of theorteical description of dressed photons, crucial step will be to rec-
ognize proper dynamic functions in close relation with “tapering” cone structure formed
by condensed dressed photons. To implement ideas in this direction, it is important to
install the Clebsch-dual variables due to Sakuma [SOO] which carry spacelike momenta
and constitute the characteristic off-shell structure of electromagnetic field.

To see the general meaning of off-shell structures, a trinity connection is to be
focused, among saddle-point instability, presence of indefinite metric (in some
Hessians of Morse functions) and the action of a non-compact group on the saddle
point.
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In wider contexts including thermodynamics, statistical mechanics, gauge theories
and induced representations of groups, most important common aspects are the trinity
connection between saddle points & indefinite metric, due to the co-existence of
stable & unstable directions corresponding to compact subgroup H and to non-
compact G/H part of the bigger group G, respectively.

4.1 Saddle points and Morse theory

When this mechanism for determining geometric invariants is applied to sector classi-
fying space, non-trivial relations between quantum Micro dynamics & geometric Macro
structure of classifying space can be envisaged and described in terms of unstable
modes and indefinite metric corresponding to saddle point structures. In Morse theory
contexts [Morse] of deriving homologies and/or cohomologies as geometric invariants,
they are determined by negative-metric components of Hessians defined as the second
derivatives of Morse functions whose dimensionality is called “Morse index”.

In concrete systematic descriptions of dynamical processes from this viewpoint, the
actual meaning of treating “stability” aspects would be restricted to examining which
“branches” would satisfy the (conditional) stability and which conditions can support
the classifying space Spec describing the multi-sector structure serves as the setting up
for such discussions.

4.2 Stability vs. instability

Thus it becomes possible for us to envisage the problems of whether stable or unstable
naturally in wider perspectives. Moreover, this kind of contexts would require us to
pursue such processes as the formation of classifying spaces Spec through emergences
triggered by the instability at saddle points as the bifurcation points between stability
& instability.

Through this kind of changes, big transitions would perhaps be implemented to
enable us to be faithful to such natural recognition that dynamical motions are
absolute and fundamental and stable states are conditional.

Are the basic points for this direction hidden in “indefinite metric” which has been
disliked so far?: answer to this question is really affirmative when we combine the
following points, i) indefinite metric at the saddle point, ii) symmetry breaking
aspects inherent in Maxwell equation, and iii) spacelike supports of dressed
photon momenta described by Clebsch-dual field.

4.3 Roles Separated into Micro vs. Macro with geometric in-
variants

Now we consider the problems along the above line.
For this purpose, we consider first 1) induced representation of groups, and 2) guage

theories.
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1) As is well known,
Lie group G: compact ⇐⇒ Killing form θ of its Lie algebra g is negative definite,
G: non-compact ⇐⇒ Killing form θ of g is indefinite
While irreducible representation (σ,W ) of maximally compact subgroup H is real-

ized in a (finite-dimensional) positive definite Hilbert space W , the irreducible finite-
dimensional representation of non-compact semisimple G is possible only in a vector
space with indefinite metric.

5 Induced representation IndG
H

In this situation, the induced representation IndG
H(σ) [Mackey] of G induced from a

representation (σ,W ) of H can be realized in an infinite-dimensional positive definite
Hilbert space L2

σ(G → W ) = L2(G) ⊗
H

W which is defined as the subspace of W -valued

functions ξ : G −→ W on G satisfying the condition of H-equivariance:

ξ(gh) = σ(h)ξ(g) for g ∈ G and h ∈ H.

According to the equivariance condition, the representation (σ,W ) of H is recovered
(by the left translation) at the origin e ∈ G:

[lh−1ξ](e) = ξ(he) = ξ(eh) = σ(h)ξ(e).

In this way the appearance of indefinite metric in the representation space due
to non-compactness of G is absorbed into the infinite dimensionality of the repre-
sentation space.

5.1 Micro-unphysical can become Macro-physical

2) In the case of (abelian) gauge theory with a gauge potential Aµ, its Lorentz covariant
formulation is possible only in a state vector space with an indefinite metric. In the total
space with indefinite metric, we can introduce the concept of a physical subspace Vphys

consisting of gauge-invariant physical modes, by imposing such a “subsidiary condition”
[KO] as Φ ∈ Vphys ⇐⇒ (∂µAµ)(+)Φ = 0. In this physical subspace Vphys longitudinal
modes causing the difficulties of indefinite metric are shown to be absent, according to
which consistency of the probabilistic interpretation is guaranteed within Vphys at the
Micro level.

Existence of quantum modes with indefinite metric spoils the consistency of the
theory at Micro levels, as is seen in the difficulties caused by longitudinal photons in
probabilistic interpretation. For this reason, one tries to exclude longitudinal photons
from QED and it is common wisdom that such unphysical modes can be systemati-
cally expelled from physical subspace of physical modes selected by imposing a suitable
“subsidiary condition”.
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5.2 Coulomb mode as Micro-unphysical & Macro-physical

As a plain fact in real Macro world, Coulomb modes exist and mediate interactions be-
tween electric charges. According to the standard “quantum-classical correspondence”,
mutual relations between Micro & Macro, between quantum & classical, can be under-
stood in such a way that quantum observables non-commutative in Micro scales become
mutually commutative classical observables in the “classical limit” with ~ → 0 and that
classical observables can be “quantized” through imposing the canonical commutation
relations as a result of which quantum theory equipped with non-commutative quantum
observables can be realized.

In non-trivial emergence processes to Macro, however, this simple-minded picture
between quantum & classical observables fails to hold by such paradoxical situations
that some physical variables invisible (or driven away as unphysical modes) at Micro
level may become visible in Macro world, as is exemplified by longitudinal Coulomb
modes. In such cases, how is the fate of risky “indefinite metric”??

5.3 How Induced Representations avoid Indefinite Metric?

In emergence to Macro, indefinite metric in Micro disappears to be substituted by
geometric non-triviality. This phenomenon takes place also in the construction of rep-
resentations of non-compact groups induced from its compact subgroup.

Typical example found in ∞-dimensional unitary rep. of (inhomogeneous) Lorentz
group (R4o)SL(2,C), first established by a physicist E. Wigner in 1939 [Wig39] in use
of the method of induced representations. In spite of non-compactness of SL(2,C), we
do not encounter infefinite metric in this situation.

Mechanism of induced representations to suppress infefinite metric can be seen in such
a form that non-compact group SL(2,C) possibly inducing infefinite metric is treated
here as base space M := G/H = SL(2,C)/SU(2) of SU(2)-bundle:

H := SU(2) ↪→ G = SL(2,C) ³ M = SL(2,C)/SU(2).

5.4 Alternation between indefinite metric in Micro & geometric
non-triviality in Macro

At each point of base space M = SL(2,C)/SU(2) (as a part of sector classifying space),
we have a fixed Lorentz frame acted upon by rotation group SU(2) as the structure
group of each Lorentz frame and the actions of Lorentz boosts SL(2,C) are just to
move from one Lorentz frame to another, which do not exhibit infefinite metric related
with SL(2,C) like the case of its matrix representation.

On this geometric setting up, the representation Ind
SL(2,C)
SU(2) (σ) ∈ Rep(SL(2,C)) in-

duced from a representation σ ∈ Rep(SU(2)) is defined on the Hilbert space L2
σ(SL(2,C) →

W ) as given above, which is isomorphic to L2(M) ⊗ W in the present situation where
the base space M = SL(2,C)/SU(2) is a symmetric space.
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5.5 “Wigner rotation” as Dual of IndG
H

Owing to the duality,

[IndG
H(σ)](g) = 〈g|IndG

H(σ)〉 = 〈(IndG
H)∗(g)|σ〉 = σ((IndG

H)∗(g)),

each group element g ∈ G belonging to non-compact G = SL(2,C) is transferred to
(IndG

H)∗(g) belonging to compact subgroup H := SU(2):

Rep(SU(2)) ∋ σ 7−→ IndG
H(σ) ∈ Rep(SL(2,C)),

SU(2) ∋ (IndG
H)∗(g) ← g ∈ SL(2,C).

This mapping (IndG
H)∗ is called (in physics) “Wigner rotation”, since each of its image

(IndG
H)∗(g) ∈ SU(2) is a rotation.

5.6 “Wigner rotation” as Gauge Connection

According to exact sequence H ↪→ G ³ M = G/H, group G can be interpreted as an
H-principal bundle with structure group H over base space M = G/H. In this context,
the sequences Rep(G/H) ↪→ Rep(G) ³ Rep(H) and H ↪→ G ³ G/H are split exact
sequences, owing to the induced representation IndG

H : Rep(H) −→ Rep(G) and to the
“Wigner rotation” as its dual (IndG

H)∗ : G ∋ g 7−→ (IndG
H)∗(g) ∈ H, resepectively:

Rep(G/H) ↪→ Rep(G)
IndG

H

¿ Rep(H),

H À
(IndG

H)∗
G ³ G/H.

I.e. vector bundle Rep(G) on base space Rep(H) with standard fiber Rep(G/H) has
IndG

H as a horizontal lift.
Principal H-bundle G over G/H has a H-valued connection given by (IndG

H)∗.
=⇒ Induced representation gives a basis for structural analogy with gauge theory,

in terms of gauge connection (IndG
H)∗ as a splitting of exact sequence.

5.7 No Problem for Macro Coulomb Mode

In the case of 2) with the Coulomb mode, we need not worry about the appearance
of indefinite metric because the longitudinal Coulomb mode of classical gauge fields is
already described in terms of the commutative variables. Instead, what can be non-
trivial now is the possibility for condensed modes of particles due to Coulomb attractive
force, according to which such non-trivial effects as superconductivity phenomena can
be realized.
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6 Spacelike momenta shared by statistical mechan-
ics, Regge poles, dressed photons & Coulomb force

After the case studies of 1) induced representations and 2) gauge theories with Coulomb
mode, what to be analyzed for the purpose of understanding common features among
various composite systems with inclusion relations can be found as follows:

3) statistical mechanics and thermodynamics
4) Regge trajectories appearing in hadron scattering processes,
5) mechanism of dressed photons.

Because of the big difference in the appearance among these five cases, however, it
may be unclear where we can find any coherent common features. Just skipping the
detailed account along individual specific features, the common essence shared by all
these cases can be found in the existence of the following three levels as well as their
mutual relationship:

6.1 Exact Sequence consisting of Broken/ Unbroken Symmetry
groups

a) a compact Lie group H to describe inivisible Micro dynamics associated with some
flows,

b) the level of “horizontal duality” formed by the algebra X of observables to visualize
H and the state space EX (⊂ X ∗) of X which is controlled by a Lie group G containing
H as a subgroup, and,

c) the sector classifying space Spec(⊃ G/H) emerging from the states EX of X ,
What is most important is such a situation that the group G(⊃ H) controlling

the level b) of “horizontal duality” is a non-compact Lie group with a Killing form
with indefinite signature, arising from the extention of the group H of Micro dynamics,
characterized by the exact sequences:

H ↪→ G ³ G/H,

Rep(G/H) ↪→ Rep(G) ³ Rep(H).

6.2 Examples of Broken/ Unbroken Sequences

For instance, in the case of dressed photons, the region with spacelike momenta is
created by introducing the Clebsch-dual variables and in the case of Regge trajectory
in hadron physics, the t and u-channels formed via the duality transformations s À t
& s À u interchanging s, t & u-channels provide the stages of Regge trajectories
consisting of the series of Regge poles with complex angular momenta. While
well-known Gibbs formula 〈A〉 = Tr(Ae−βH)/Tr(e−βH) in statistical mechanics shows
no remarkable structural features, it can be applied only to small finite systems with
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discrete energy spectrum, In contrast, Tomita-Takesaki modular theory required for
the treatment of general systems with infinite degrees of freedom is equipped with such
a double structure as consisting of the von Neumann algebra M of physical variables
in the system and its modular dual M′ = JMJ whose composite system M∨JMJ is
controlled by the Hamiltonian Hβ = −JHβJ with “indefinite metric”, whose physical
interpretation can be reduced to the concept of heat bath.

6.3 Induced Representations & Automorphic Forms

The induced representation IndG
H(σ) of the Lorentz group G = SL(2,C) determined

by a unitary representation σ of the rotation group H = SU(2) in a finite-dimensional
vector space W is given in an infinite-dimensional Hilbert space V defined by

V := {ϕ : G −→ W ;ϕ(gh) = σ(h−1)ϕ(g) for g ∈ G,h ∈ H}
according to the defining equation [IndG

H(σ)(g)ϕ](g1) := ϕ(g−1g1), which reproduces
σ(h) for h ∈ H at g = e ∈ G:

[IndG
H(σ)(h)ϕ](e) = σ(h)[ϕ(e)].

6.4 Automorphic Forms arising from Induced Representation

By means of the horizontal lift G/H −→ G of G/H = SL(2,C)/SU(2) associated
with the “Wigner rotation” (IndG

H)∗, the domain of IndG
H(σ) can be shifted from G

to G/H. Therefore, if we express the elements g ∈ G in the form of fractional linear
transformation, the above definition of V can be rewritten with as

V = {ϕ : G/H → W ;ϕ(gz) = σ(cz + d)−1ϕ(
az + b

cz + d
),

g =
µ

a b
c d

¶
∈ G, z ∈ G/H},

which shows that the module V consists of automorphic forms ϕ. Since automorphic
forms are transformed into ζ functions by Mellin transform, the pair (G,H) with G/H
a symmetric space is related to the number-theoretical contexts.

6.5 Fractional Linear Transformaions

While the use of fractional linear transformation: gz := az+b
cz+d for g =

µ
a b
c d

¶
∈ G

may look accidental owing to the (2×2)-matricial form of SL(2,C), this is not the case
because this speciality can be easily lost by such identification of the Lorentz group as
G ≅ SO(1, 3) ↪→ M(4,R). Actually, what is essential is not such a special form of
matrices but the decomposition of representation vector space V of G into unbroken V1
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and broken subspaces V2, V = V1⊕V2, according to which G has such a decomposition

as
V1

V2

V1 V2µ
A B
C D

¶
in a certain neighbourhood of the identity element of G.

6.6 Flag manifold as Generalization of Fractional Linearity

Moreover, if we want to extend the above bipolar contrast between unbroken vs broken
into some scale-dependent multi-polar gradations of symmetry breakings along many
steps, we can consider such a flag manifold structure as related with a multi-component
decomposition V = V1 ⊕ V2 ⊕ · · · ⊕ Vr of the representation space V:

G = U(p1 + p2 + · · · + pr)
y G/H = U(p1 + p2 + · · · + pr)/[U(p1) × U(p2) × · · · × U(pr)],

which may be related with the continued fractions. In this context, we can see the
intrinsic relation between fractional linearity and Grassmann manifold in the case of
r = 2.

7 “Indefinite Metric” inherent in Modular Structure
of Thermal Equilibrium

Here we want to touch on a blind spot in the “common sense” in physics which can
interpret the “stability” of a state only in such a restricted form as the poisitivity of the
energy in the form of spectral condition.

While, in inifinite system with the operator e−βH out of trace class, it is impossible
to separate sharply the physical system and its heat bath, the mutual relation between
them can be mathematically understood [HHW, BR] by the relation:

Hβ = −JHβJ. (1)

If the component H of Hβ acting on the system Xω can safely be extracted and be
separated from that on the commutant X ′

ω, then the essential contents of this equation
could be seen in such a form as

Hβ = H − JHJ,

7.1 Negative Metric in Modular Theory and Heat Bath

In infinite systems, however, meaning of the above H is only formal. Apart from this
subtlety, the above formal equation explains that anti-unitary operator J interchanges
the system & its heat bath. Since total system consisting of the system & heat bath
has Hamiltonian Hβ whose spectrum is positive/ negative symmetric as in (1), negative
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energy component may be interpreted as energy going from the system to the heat
bath. Interestingly enough, concept of “heat bath” which is mysterious but important in
thermodynamics has once been expelled by Gibbs formula 〈A〉 = Tr(Ae−βH)/Tr(e−βH)
(applicable only for the system with discrete spectrum), but, has survived.in the abstract
form in algebraic general formulation of statistical mechanics based upon the Kubo-
Martin-Schwinger condition [KMS, HHW, BR]:

ωβ(AB(t)) = ωβ(B(t − iβ)A),

which is free from such a restriction of discrete energy spectrum.

Similarly to longitudinal photons with “negagive metric” Hamiltonian Hβ of the
total system contains negative component (formally −JHJ), which means the exis-
tence of a saddle point instability associated with thermal equilibrium states.
Without unstable modes and their condensations, existence of Macro heat bath may
have been impossible.

8 Frobenius Reciprocity

Two opposite directions are involved in induced representations, to expand σ ∈ RepH

of smaller H into that IndG
H(σ) ∈ RepG of bigger G, and to identify a given γ ∈ RepG

of G as γ = IndG
H(σ) induced from σ ∈ RepH of H. This latter process is controlled by

the imprimitivity. Mutual relation between two processes is controlled by Frobenius
reciprocity:

RepH(γ ¹H−→ σ) ¿ RepG(γ −→ IndG
H(σ))

or
RepG(IndG

H(σ) −→ γ) ¿ RepH(σ −→ γ ¹H),

where RepG(γ1 −→ γ2) means the set of intertwiners T : γ1 −→ γ2 from γ1 to γ2

satisfying the intertwining relation ∀g ∈ G Tγ1(g) = γ2(g)T , namely,

T ∈ RepG(γ1 −→ γ2) ⇐⇒ ∀g ∈ G : Tγ1(g) = γ2(g)T

Vγ1

T−→ Vγ2

γ1(g) ↓ ª ↓ γ2(g)
Vγ1 −→

T
Vγ2

9 Towards Theory of Dressed Photons

In order to construct a consistent theory for describing dressed photons, it will become
a crucial breakthrough to reproduce faithfully its proper dynamic functions by grasping
properly the “tapering” cone structure formed by the condensed dressed photons. To
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implement the ideas in this direction, it is important to install the Clebsch-dual elec-
tromagnetic field [SOO] discovered by Sakuma carrying spacelike momenta which
constitute the characteristic off-shell structure of electromagnetic field. which forms the
Micro-Macro boundary level described by a symmetric space G/H = Spec arising from
a broken symmetry by visualizing the s-channel strictire at the invisible Micro level into
spacelike t-channel.
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A Brief Summary of Micro-Macro Duality in Quadral-
ity Scheme

Integrating [dynamical aspects of the system in question] with [geometric description
of the relevant structure in terms of invariants generated by dynamical processes which
implement classification of the processes and structures]

=⇒ category-theoretical framework of “Micro-Macro duality+quadrality scheme”
([IO03]; I.O., “Quantum Fields and Micro-Macro Duality” [IO13] [2013, in Japanese]
and also see [IOOk13]) by incorporating categorically natural duality between dynamical
processes & classifying spaces.

By analyzing closely in this framework dynamical processes and classifying scheme
based on geometric invariants generated by the former processes, we can understand
that both of invisible Micro domain corresponding to dynamical processes and of visible
Macro structure to the classifying structure in terms of geometric invariants constitute
duality structure, to be called “Micro-Macro duality” [IO06].

A.1 Quadrality Scheme

Duality between on-shell ¿ off-shell means that on-shell corresponds to the particle-like
Macro and the off-shell to the existence of quantum fields in virtual invisible modes.

Micro processes of motions can be described by a group(oid) structure acting on the
algebras of physical quantities, Macro classifying structure emerging from dynamical
processes can be extracted from the structure of state space as the dual of algebra of
physical quantities and a geometric space emerges consisting of classifying indices ex-
tracted from states which functions as the dual of the Micro dynamical system. Putting
altogether these four ingredients of dynamics, algebras, states and classifying space,
they constitute a “quadrality scheme” describing “Micro-Macro duality” [IO06]:
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↗ Classifying Space
= Spec

(Family of )
States

¿ » (Representations) ¼ ¿ Algebra

Dynamics
↗

.

A.2 Emergence of sector classifying space

In this mathematical framework for describing emergence process, crucial roles are
played by the concept of a “sector”.

What is a sector : for the mathematical description of a quantum system, we need
a non-commutative (C* -)algebra X (: Algebra) of physical variables to charac-
terize the system and a certain family of states ω ∈ EX to quantify measured values
ω(A) of physical variables A ∈ X . According to GNS theorem [BR], a representation
(πω,Hω,Ωω) (called GNS representation) of X is so constructed from ω that physical
variables A ∈ X are represented as linear operators πω(A) acting on a Hilbert space Hω,
the totality of which determines a very important concept of representation von Neu-
mann algebra πω(X )′′ =: Xω. Elements C ∈ Zω(X ) of the center Zω(X ) of Xω defined
by

Zω(X ) := πω(X )′′ ∩ πω(X )′ = Xω ∩ X ′
ω,

are commuting with all elements X in Xω: [C, X] = 0 for ∀X ∈ Xω

and play the role of “order parameters” as commutative Macro observables.

A.3 Sectors = Factor States

Commutativity of center allows simultaneous diagonalization of Zω(X ) yields spec-
tral decomposition of a commutative algebra Zω(X ) = L∞(Spec) with spectrum of
Zω(X ) denoted by Spec := Sp(Zω(X )). The diagonalized situation with all the or-
der parameters specified corresponds physically to a pure phase, or mathematically
corresponding to a quasi-equvalence class of a factor state γ with a trivial cener:
Zγ(X ) = Xγ

′′ ∩ Xγ
′ = C1 which is called a sector. Here quasi-equvalence [Dix]

means unitary equivalence up to multiplicity and a factor state corresponds to a
minimal unit of states or representations in the sense that its center cannot be decom-
posed any more.

A.4 Sectors and Disjointness

To understand properly the concept of sectors, it is crucial to note the following points
about the mutual relations between different sectors. Namely, the relation betwen two
different sectors π1, π2 is expressed by the concept of disjointness as follows:

Tπ1(A) = π2(A)T (∀A ∈ X ) =⇒ T = 0,
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which is stronger than unitary inequivalence and has deep implications as seen later.
Macro quantities characterized by their commutativity appear as the center Zω(X ) of
a mixed phase algebra πω(X )′′ = Xω containing many different sectors as pure phases,
and its spectrum Spec = Sp(Zω(X )) as realized values χ ∈ Spec of order parameters
C ∈ Zω(X ) discriminates the pure phases contained in the mixed phase state ω, The
sectors as pure phases play the roles as the Mico-Macro boundary between quantum
Micro system & classical Macro system as the environment, and they unify, at the same
time, both these into a Micro-Macro composite system as a mixed phase.

A.5 Relations among Sectors

According to this story, the duality between intra-sectorial domains vs. inter-sectorial
relations holds as follows:

←− Visible Macro consisting of sectors −→ inter-sectorial
relations

· · · γN sectors γ γ2 γ1 Spec

...
...

...
... ↑ intra-sectorial

· · ·πγN

... πγ

... πγ2

... πγ1

... ∥
...

...
...

... ↓ invisible Micro

The concept of sectors defined in this way as Micro-Macro boundaries between in-
visible Micro & visible Macro realizes the theoretical framework of quadrality scheme
which provides the precise formulation of “quantum-classical correspondence”.

A.6 Disjointness vs. Quasi-equivalence

Along this line, we clarify the homotopical basis of Tomita theorem of central decom-
position of states and representations [BR].

In the C*-category RepX of representations of a C*-algebra X , there exists the
universal representation πu = (πu,Hu) ∈ RepX containing ∀π = (π, Hπ) ∈ RepX as its
subrepresentation: πu ≽ π = (π, Hπ) ∈ RepX .

Such πu can be concretely realized as the direct sum (πu,Hu) := ⊕
ω∈EX

(πω,Hω) of all

the GNS representations, with the action of universal enveloping von Neumann algebra

X ′′ ∼= X ∗∗ ∼= πu(X )′′ y Hu.

For a representation π ∈ RepX its “disjoint complement” π
p◦ is defined [IO04a] as

maximal representation disjoint from π:

π
p◦ := sup{ρ ∈ RepX ; ρ

p◦ π},
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where ρ
p◦ π ⇐⇒ RepX (ρ → π) = {0}: i.e., no non-zero intertwiners.

A.7 Disjoint Complements & Quasi-equivalence

Then, we observe the following four points, i) – v) [IO04a]:

i) P (π
p◦) = c(π)⊥,

P (π
p◦ p◦) = c(π)⊥⊥ = c(π) := ∨

u∈U(π(X )′)
uPπu∗ ∈ P(Z(W ∗(X ))),

where P (π) ∈ W ∗(X )′ is defined as the projection corresponding to (π, Hπ) in Hu and
c(π) is the central support of P (π) defined by the minimal central projection majorizing
P (π) in the center Z(W ∗(X )) := W ∗(X ) ∩ W ∗(X )′ of W ∗(X ).

ii) π
p◦ p◦
1 = π

p◦ p◦
2 ⇐⇒ π1 ≈ π2 (: quasi-equivalence= unitary equivalence up to multi-

plicity ⇐⇒ π1(X )′′ ≅ π2(X )′′ ⇐⇒ c(π1) = c(π2) ⇐⇒ W ∗(π1)∗ = W ∗(π2)∗)

A.8 Quasi-equivalence & Modular Structure

iii) Representation (π
p◦ p◦, c(π)Hu) of the von Neumann algebra W ∗(π) ≅ π

p◦ p◦(X )′′ in

c(π)Hu = P (π
p◦ p◦)Hu gives the standard form of W ∗(π) equipped with a normal faithful

semifinite weight ϕ and the associated Tomita-Takesaki modular structure (Jϕ,∆ϕ)
[BR], whose universality is characterized by the adjunction,

Std(π
p◦ p◦ → σ) ≅ RepX (π → σ).

Namely, any intertwiner T ∈ RepX (π → σ) to a standard form representation (σ,Hσ)

of W ∗(σ) is uniquely factored T = T
p◦ p◦ ◦ ηπ through the canonical homotopy ηπ ∈

RepX (π → π
p◦ p◦) with ∃!T

p◦ p◦ ∈ RepX (π
p◦ p◦ → σ).

A.9 Symmetry and Fixed-point subalgebra

Let a physical system be described by the algebra X of its physical variables. Under
action α = (αg)g∈G of a Lie group G via automorphisms αg on X , the observable algebra
A is defined as G-invariant subalgebra of X by

A = XG := {A;αg(A) = A for ∀g ∈ G}.
Under suitable assumptions, an exact sequence

A ↪→ X ³ X/A ∼= Ĝ

arises in this situation, from which total algebra X can be recovered from the observable
algebra A [DR89, DR90] by means of the crossed product of Ĝ in the context of the
categorical adjunction:

A = XG ¿ X = A C Ĝ.
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When we combine the inclusion relation of groups controlled by the exact sequence
H ↪→ G ³ G/H with the group actions on the algebras of physical variables, we en-
counter the situation of symmetry breakings which involves the mutual relations among
various subalgebras XG ↪→ XH ↪→ X .

B Group & Representations in Categorical Context

In view of the definition for a group representation γ ∈ RepG given by the group
homomorphism properties γ(g1g2) = γ(g1)γ(g2), γ(e) = idVγ , γ(g−1) = γ(g)−1, a G-
representation γ can be viewed as a functor from the group G as a one-object category
G = CG consisting of an object ∗ and of group elements g ∈ G as morphisms ∗ g−→ ∗ ∈
G = Mor(CG)) to another category Hom(Vγ) consisting of continuous linear operators in
the Hilbert space Vγ . From this categorical viewpoint, the intertwiner T ∈ RepG(γ1 −→
γ2) from γ1 to γ2 is to be interpreted as a natural transformation from a functor γ1

to another one γ2 characterized by the commutativity diagram. In this way, the totality
RepG of G-representations can be viewed as a category HilbG of functors from the group
G as a category CG = G to the category Hilb of Hilbert spaces with morphisms given by
G-intertwiners as natural transformatrions. In this context, the group induction IndG

H

from the functor category RepH of H-representations to that RepG of G-representations
can be viewed as a natural transformation IndG

H : RepH −→ RepG (preserving the
tensor product structures of RepH and RepG: IndG

H(σ1 ⊗ σ2) = IndG
H(σ1) ⊗ IndG

H(σ2)
for σ1, σ2 ∈ RepH).

B.1 Kan Extensions as Categorical Inductions

Given a funcor K : B → A from a category B to A we consider the problem of extending
a given functor S : B → M from B to M into one T : A → M from A to M so as to
satisfy the relation T ◦ K = S:

A
T?

99K M

K ↑ ª ↗ S

B

.

In this situation, the functor T is called a Kan extension [MacL] of functor S along
functor K.

B.2 From Kan Extension to Induced Representation

For instance, if we identify K : B → A as the inclusion ι : H ↪→ G of a subgroup H into
the total group G and S : B → M as a representation σ : H → M = Hilb of H with
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Hilb identified with the category of Hilbert spaces, then T : A → M corresponds to an
extension of H-representation σ to G-representation γ:

G

γ?

99K M

ι ↑ ª ↗ σ

H

,

since the commutativity σ = γ ◦ ι of the diagram means σ = γ ¹H . In this sense, the
Kan extension can be viewed as a categorical version of the induced representations of
groups.

B.3 Kan Extension and Yoneda Lemma

In view of the important roles played by natural transformations in mediating adjoint
functors, we need to distinguish between the right & left Kan extensions as follows:

NatMB(T ◦ K −→ S) ¿ NatMA(T −→ RanK(S))

NatMA(LanK(S) −→ T ) ¿ NatMB(S −→ T ◦ K)

The concept of Yoneda embedding [MacL]:

yc(−) = C((−) −→ c) ∈ SetsC
op

: C ∋ d 7−→ C(c ←− d) ∈ Sets

gives an embedding of a category C into the category SetsC
op

of pre-sheaves on C (as a
categorical generalization of the concept of functions), and hence, it would be quite useful
to consider the Kan extensions Ranyc or Lanyc along K = yc. However, systematic
investigation on this topic should be done on the next occasions.
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Abstract

A nonlocal response theory was developed to describe a many-electron system within the neigh-

borhood of a nanostructure radiating the longitudinal and transverse electric fields, which are

fundamentally reduced to the scalar and vector potentials (SP and VP). The coexistence of the SP

and VP incidences distinguishes such a near-field optical system from the ordinary optical system,

in which only the VP (under the Coulomb gauge) incidence survives far from the light source. This

fact is the motivation for equal treatment of the SP and VP as the cause of the response in the

near-field optical system. In the semiclassical treatment, the linear and nonlinear single suscepti-

bilities are derived in the form of Heisenberg operators by the functional derivatives of the action

integral of the matter with respect to the SP and VP. These single susceptibilities relate the SP

and VP (as the cause) to the induced charge and current densities (as the result), and guarantee

charge conservation and gauge invariance; this theory is free from gauge-fixing. It is necessary to

consider the quantum many-electron effect (exchange-correlation effect) to make the ground state

bounded in the non-perturbed system. This is done by employing the fundamental idea of density

functional theory, instead of the ordinary unequal treatment of the SP and VP, that is, remaking

the SP into a Coulomb interaction between electron charges. Applying the present linear response

theory to the non-metallic material in a limited near-field optical system reveals that the electric

field with the associated permittivity is not suitable quantity to describe the response, instead, the

SP and VP with associate single susceptibility are essential.

PACS numbers: 78.67.-n, 78.20.Bh, 41.20.-q, 42.25.Ja

Keywords: single susceptibility, non-resonant effect, optical near field, response function, electromagnetic

potential
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I. INTRODUCTION

This paper develops a nonlocal response theory adequate for near-field optics (NFO) in

the semiclassical treatment. The linear and nonlinear single susceptibilities are derived sys-

tematically by the functional derivatives of the action integral of the matter with respect

to the scalar and vector potentials (SP and VP). These linear and nonlinear single suscep-

tibilities relate the SP and VP (as the cause) to the induced charge and current densities

(as the result), and guarantee charge conservation and gauge invariance. The present single

susceptibilities and associated induced charge and current densities are given in the form of

Heisenberg operators.

In Ref.[1], the present author discussed the linear single susceptibility, its application to

an one-electron optical system, and a naive idea of employing the density functional theory.

This paper is its generalization including systematic derivation of linear and nonlinear single

susceptibilities in the form of Heisenberg operator, a simple proof of charge conservation and

gauge invariance guaranteed by such the susceptibilities, and application to a many-electron

system with detailed discussion on the density functional theory.

The introduction below contains the followings: §IA reveals the necessity of the single

susceptibility, instead of the electric permittivity and magnetic permeability. §I B points

out the preference to equal treatment of the SP and VP as the cause of response in NFO,

instead of the unequal treatment in ordinary optics under the Coulomb gauge. §I C explains

the difficulty of constructing the response theory in NFO, which inevitably connected to a

many-electron problem via the SP. §ID represents the purpose of this paper .

A. The necessity of the single susceptibility

As the cause of response, it is natural and essential to use the SP and VP, which represent

for the electromagnetic (EM) field in the Hamiltonian for quantum electrodynamics. Three

reasons are given below for the inapplicability of the electric and magnetic fields as the cause

of response. First, there exist such systems that cannot be described in terms of the electric

and/or magnetic fields, namely, the superconductor system with the Meissner effect[2] and

the coherent electron system with the Aharanov-Bohm effect[3]. A limited NF optical system

is another example, as shown in the one-electron system in Ref.[1] (and will be shown in a
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many-electron system in §VI of this paper).

Second, the constitutive equations with the electric permittivity and magnetic permeabil-

ity give relationships between redundant degrees of freedom. Actually, the essential source

of the EM field is the three components of charge density and the transverse current den-

sity. The longitudinal current density is excluded because it can be determined through

charge conservation law, once the charge density is known. However, the polarization and

magnetization as the source of the EM field have totally six components, which include

the redundancy. So that the associated constitutive equations using the two susceptibilities

include the constraint condition for the redundancy, of which the physical meaning is not

declared. This situation is physically unreasonable and should be fixed by the constitutive

equation using a single susceptibility associated with the proper degrees of freedom.

Third, as first claimed by Cho[4, 5] for the low-symmetry systems with chirality (such as

the NF optical system with a skewed nanostructure), the ordinary two constitutive equations

are not available because the electric and magnetic responses become indistinguishable. He

also revealed that this error cannot be fixed by the Drude-Born-Fedorov fomulas[6], which

extends the two constitutive equations adding the cross terms of the electric-field-induced

magnetization and the magnetic-field-induced polarization.

Therefore, from a general view point, it is essential to employ a single susceptibility with

the SP and VP, instead of the electric permittivity and magnetic permeability with the

electric and magnetic fields.

B. The preference to equal treatment of the SP and VP in a NF optical system

Suppose a small-scale material is placed in the vicinity of a nanostructure, which functions

as a light source (FIG.1). In such a system, under the NF incidence condition, the target

material is exposed to the longitudinal and transverse electric fields simultaneously, whereas

in a system under the far-field incidence condition, the target material is exposed only to

the transverse field, which survives far from the light source. Therefore, the coexistence of

longitudinal and transverse electric fields distinguishes such a system under the NF incidence

condition from that under the far-field incidence condition.

Here, the longitudinal electric field originates from the charge density on the nanostruc-

ture, obeys Coulomb’s law, and has a non-radiative nature to localize around the nanos-
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tructure. On the other hand, the transverse electric field originates from the transverse

current density on the nanostructure, obeys Ampere-Maxwell law and Faraday’s law, and

has a radiative nature allowing it to propagate far from the light source, accompanied by the

magnetic field. (The longitudinal current density is determined via the charge conservation

law, once the charge density is known, and is not an independent source.) Therefore, the

two incidences coexisting in an NF optical system have distinct properties.

Furthermore, owing to the non-relativistic nature of the system, the SP and VP appear

in a different manner in the Hamiltonian, (for example, Eq.(30) in §IV,) which governs the

electron response. Considering that the SP and VP under the Coulomb gauge represent the

longitudinal and transverse electric fields, respectively, one may confirm that the two types

of incidences in NFO cause different responses ; see §VI for an explicite demonstration.

Therefore, it is reasonable to treat SP and VP equally as the cause of response in the NF

optical system. Up to now, there has been no such theoretical framework for equally treating

the SP and VP. The reason for this lies in the the many-electron problem inevitably related

to NFO via the SP (the longitudinal electric field), as is mentioned in the next subsection.

+   +

- -

E
(ℓ)

E
(t)

E
(t)

light source

FIG. 1: Optical systems under near- and far-field incidences (the left and right side figures, respec-

tively) . The former system is exposed simultaneously to the incident longitudinal and transverse

electric fields (fundamentally represented by the scalar and vector potentials, respectively, under

the Coulomb gauge), whereas the latter system is exposed to only the transverse field (the vector

potential under the Coulomb gauge).
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C. A many-electron problem inevitably related with NFO

The relationship between NFO and many-electron problem has not been well recognized,

although the problem of how to consider the Coulomb interaction in response function has

remained for a long time[7]. In the usual Hamiltonian for a many-electron system under the

Coulomb gauge, the SP is rewritten as the interaction between the electron charge density

operators, and only the VP is considered as the cause of the response. This unequal treat-

ment of the SP and VP is needed to consider the quantum many-electron effect (the so-called

exchange-correlation effect) to construct the ground and excited states as the proper bound

states in a many-electron system. This usual procedure to treat the non-relativistic many-

electron system is compatible with ordinary optics, where the electron system of interest is

far from the light source, and the SP incidence is negligible. By contrast, in an NF optical

system, the usual approach results in a difficulty of understanding the response to the SP

incidence, because both the SP incidence (radiated by the nanostructure) and the inherent

SP (originating from the particle charge) are built into the two-body Coulomb interaction,

and the two contributions are indistinguishable. To make matters worse, the Coulomb inter-

action in itself is so difficult to treat that it is often ignored, without considering it includes

the effect of the SP incidence.

For the NF optical system, there are two existing approaches based on certain single

susceptibilities (the nonlocal response functions). Cho formulated a single susceptibility

that relates the transverse VP (as the cause) to the current density (as the result), and

applied it to various optical systems[8]. Additionally, a modification that considers the

longitudinal electric field incidence in NF optical systems has been proposed in Chap. 5

of Ref.[5]. Keller formulated the linear single susceptibility, which relates the transverse

electric field and the incident part of the longitudinal electric field (as the cause) to the

current density (as the result) [9].

In the above two existing formulations, the SP under the Coulomb gauge (or the lon-

gitudinal electric field), except the linear-dependence of the incidence, is rewritten as the

two-body Coulomb interaction in the usual manner. Therefore, the response to the SP, in

principle, can be rigorously considered via the Coulomb interaction if the many-electron

problem is properly solved, whereas the response to the VP incidence under the Coulomb

gauge (or the transverse electric field incidence) is treated in the perturbative manner. In
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this type of approach, it is essential to solve the many-electron problem, in particular, for

the nonlinear process related with the SP. Even if the Coulomb interaction is properly con-

sidered, the unequal treatment may make it difficult to regulate the perturbation order of

the responses and to understand the role of the SP incidence.

As a result, the response theory in NFO is inevitably relates to the many-electron problem,

which causes difficulty.

D. The purpose of this paper

§IA-§I C lead to the logical fallacy to use the ordinary two susceptibilities with the electric

and magnetic fields, and the preference to use the single susceptibility equally associated

with the SP and VP, considering properly the many-electron effect in NF optical systems,

although the ordinary two susceptibilities have been widely used both in ordinary optics

and NFO. To best understand the fundamental physics in NFO, it is essential to develop

an adequate response theory. For this purpose, the present paper defines and characterizes

a single susceptibility equally associated with the SP and VP based on the action integral

from scratch.

The contents of this paper are as follows: §II defines the linear and nonlinear single

susceptibilities equally associated with the SP and VP, starting from the action integral. §III

shows that the present susceptibility respects both charge conservation and gauge invariance

in a general manner. §IV derives the linear and nonlinear single susceptibilities in the form

of the Heisenberg operators. §V shows that the many-electron effect in the present response

theory may be supported by the density functional theory to prepare the non-perturbed

ground state as well as a complete set of many-electron states. §VI applies the present linear

response theory to a simplified many-electron system, and show that the electric field with

the associated permittivity is not suitable to describe the response of a limited NF optical

system with a non-metallic material, so that the SP and VP with the single susceptibility

is essential. §VII provides a summary of this work. Two appendices are included: §A and

§B provides calculation details of §II and §VI, respectively.
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II. DEFINITION OF NEW SINGLE SUSCEPTIBILITY

Based on the Lagrangian formulation of non-relativistic quantum electrodynamics, we

define the single susceptibility, which relates the SP and VP (as the cause) to the induced

charge and current densities (as the result). Furthermore, it is shown that this susceptibility

guarantees that charge conservation and gauge invariance hold; see the next section. The

action integral for non-relativistic quantum electrodynamics is:

I[ψ̂†α, ψ̂α, ϕ,A] ≡ Imat[ψ̂
†
α, ψ̂α, ϕ,A] + IEM[ϕ,A], (1)

Imat[ψ̂
†
α, ψ̂α, ϕ,A] ≡ 1

c

∫
d4x

{
ψ̂†α(x)(iℏ∂t − qϕ(x))ψ̂α(x)

− 1

2m

(
ℏ
−i
∂i − qAi(x)

)
ψ̂†α(x) ·

(
ℏ
i
∂i − qAi(x)

)
ψ̂α(x)

−ϕ(x)ρ(EXT)(x) + Ai(x)j
(EXT)
i (x)− ψ̂†α(x)v

(AUX)(x)ψ̂α(x)
}

(2)

IEM[ϕ,A] ≡ 1

c

∫
d4x

{ϵ0
2
(∂tAi(x) + ∂iϕ(x)) (∂tAi(x) + ∂iϕ(x))

−ϵ0c
2

2
ϵijk∂jAk(x)ϵilm∂lAm(x)

}
, (3)

where m and q(= −e) are the electron mass and charge, c is the speed of light, ϕ,A are the

SP and VP, which are assumed to be classical field in the semiclassical treatment, ψ̂†α, ψ̂α are

the electron field operators with the spin state α (one of the two spin states; so called ”up”

and ”down” states), and ρ(EXT), j(EXT) are the nuclear charge and the current densities, re-

spectively, which possibly generate inherent EM field. A static auxiliary potential v(AUX)(x)

is null for now, but is introduced here for the discussion in §V concerning the density func-

tional theory to consider the quantum many-electron effect (the exchange-correlation effect),

ϵijk is an antisymmetric tensor, and the Einstein rule is used for indices of vector and Grass-

mann fields, that is, summation should be executed over repeated indices. At this first stage

of investigation, the interaction between spin polarization and the EM field is ignored. The

soundness of the above action integral is confirmed by its Euler equations, which will soon

be derived.

The electron field operators are considered as quantized Grassmann fields. The Grass-

mann field satisfies [ψ̂α(r, t), ψ̂
†
β(r
′, t′)]+ = 0 [10], and corresponds to the ”classical” field of

the electron. These operators become the creation and annihilation operators of the elec-

tron in quantum theory (the quantized Grassmann fields), introducing the anti-commutation
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relationship: [ψ̂α(r, t), ψ̂
†
β(r
′, t)]+ = δ3(r− r′)δαβ.

The action integral is composed of two parts: one is the action integral of the matter

(including the interaction between the matter and EM field), Imat[ψ̂
†
α, ψ̂α, ϕ,A], and the

other is the action integral of the EM field, IEM[ϕ,A]. Applying the extremal (optimizing)

conditions with respect to ψ̂α(x) , ψ̂
†
α(x) leads to Heisenberg’s equation, and optimizing with

respect to ϕ(x), A(x) leads to Maxwell’s wave equations:

0 = c δψ̂†α(x)\δI = c δψ̂†α(x)\δImat

=

(
iℏ∂t − qϕ(x)− 1

2m

(
ℏ
i
∂i − qAi(x)

)
·
(
ℏ
i
∂i − qAi(x)

)
− v(AUX)(x)

)
ψ̂α(x), (4)

0 = c δI/δψ̂α(x) = c δImat/δψ̂α(x)

=

(
−iℏ∂t − qϕ(x)− 1

2m

(
ℏ
−i
∂i − qAi(x)

)
·
(

ℏ
−i
∂i − qAi(x)

)
− v(AUX)(x)

)
ψ̂†α(x), (5)

0 = c
δI

δAi(x)
= ϵ0c

2

(
−ϵijk∂jϵklm∂lAm(x)−

1

c2
∂2tAi(x)−

1

c2
∂t∂iϕ(x) +

1

ϵ0c2
(ĵi(x) + j

(EXT)
i (x))

)
,(6)

0 = c
δI

δϕ(x)
= ϵ0

(
−∂i∂iϕ(x)− ∂t∂iAi(x)−

1

ϵ0
(ρ̂(x) + ρ(EXT)(x))

)
. (7)

In Eqs.(4) and (5), the left- and right-hand functional derivatives with respect to the Grass-

mann field are executed, respectively. In Eqs.(6) and (7), the following definitions are

introduced for the electron charge and current densities, respectively:

ρ̂(x) ≡ −c δ

δϕ(x)
Imat = qψ̂†α(x)ψ̂α(x), (8)

ĵi(x) ≡ +c
δ

δAi(x)
Imat =

q

2m
ψ̂†α(x)

(
ℏ
i
∂i − qAi(x)

)
ψ̂α(x) + h.c. . (9)

The charge conservation law below holds, and is checked through explicit calculation:

∂tρ̂(x) + ∂iĵi(x) = 0. (10)

In the four-element representation, Eqs.(6) and (7) become:

(δµν□− ∂µ∂ν)A
ν(x) =

1

ϵ0c
(ĵµ(x) + j(EXT)µ(x)), (11)

where ĵµ = (cρ̂, ĵ), ĵµ = (cρ̂,−ĵ),

Aµ = (ϕ, cA), Aµ = (ϕ,−cA),

∂µ = (1/c ∂t,−∇), ∂µ = (1/c ∂t,∇),

□ = ∂µ∂µ = 1/c2 ∂2t −∆ , etc. (12)
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Although Lorentz invariance is not maintained in the non-relativistic theory, we use the

four-element notation to simply represent charge conservation and gauge invariance. For

example, Eqs.(8)-(10) become:

ĵµ(x) = −c2 δ

δAµ(x)
Imat, (13)

∂µ ĵ
µ(x) = 0. (14)

The action integral, Eq.(1) is invariant under the following gauge transformation:

Aµ(x) → Aµ(x)− c ∂µη(x),

ψ̂α(x) → e
i
ℏ qη(x)ψ̂α(x), ψ̂†α(x) → ψ̂†α(x)e

−i
ℏ qη(x) , (15)

where η(x) is the gauge function. From the point of view of Noether’s theorem[11], the

gauge invariance of the action integral is the cause of the charge conservation law, Eq.(10)

or Eq.(14).

Let us separate the EM field into two parts:

Aµ(x) = A(0)µ(x) + ∆Aµ(x), (16)

where A(0)µ is the static, non-perturbative EM potential satisfying Eqs.(6) and (7), and

∆Aµ(x) is the perturbative EM potential. Under this variation of the EM field, let us re-

optimize the action integral of the matter, Imat[ψ̂
†
α, ψ̂α, A

µ]. That is, we re-optimize the

electron field operator satisfying Eqs.(4) and (5) under A(0)µ+∆Aµ(x). In the above proce-

dure, the variation of the action integral of the matter is expressed by the total functional

derivative with respect to Aµ(x):

δ

δAµ(x)
Imat[ψ̂

†
α[A

ν ] , ψ̂α[A
ν ] , Aν ]

∣∣∣∣
Aν=A(0)ν

=

[
δ

δAµ(x)

∣∣∣∣
explicit

Imat +

∫
d4x ′

δψ̂†α(x
′)

δAµ(x)
δψ̂†α(x

′)\δImat

+

∫
d4x ′δImat/δψ̂α(x

′)
δψ̂α(x

′)

δAµ(x)

]
Aν=A(0)ν

=
−1

c2
ĵµ(x; [A(0)ν ]) , (17)

where the first term in the second expression is the variation explicitly caused by the pertur-

bative EM field, and the second and third terms are the implicit variations, created through
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re-optimization of the field operator to satisfy Eqs.(4) and (5) under the existence of the

perturbative EM field. The last expression is derived using Eq.(13), Eqs.(4) and (5). The

above equation reveals that the first order total functional derivative of the action integral

of the matter is simply the current density in the non-perturbed system. Furthermore, the

second order total functional derivative is calculated as follows:

δ

δAµ1(x1)

δ

δAµ(x)
Imat[ψ̂

†
α[A

ν ] , ψ̂α[A
ν ] , Aν ]

∣∣∣∣
Aν=A(0)ν

=

[
δ

δAµ1(x1)

(
δ

δAµ(x)

∣∣∣∣
explicit

Imat

)
+

∫
d4x ′

δ

δAµ1(x1)

(
δψ̂†α(x

′)

δAµ(x)
δψ̂†α(x

′)\δImat

)

+

∫
d4x ′

δ

δAµ1(x1)

(
δImat/δψ̂α(x

′)
δψ̂α(x

′)

δAµ(x)

)]
Aν=A(0)ν

=
−1

c2
δĵµ(x; [Aν ])

δAµ1(x1)

∣∣∣∣∣
Aν=A(0)ν

, (18)

where the second and third terms in the second expression are null. Actually, the integrand

of the second term is:[(
δ

δAµ1(x1)

δψ̂†α(x
′)

δAµ(x)

)
δψ̂†α(x

′)\δImat +
δψ̂†α(x

′)

δAµ(x)

(
δ

δAµ1(x1)
δψ̂†α(x

′)\δImat

)]
Aν=A(0)ν

,

The first term in this equation is null because of Eq.(4), and the second term is also null

because of Eq.(A2) in Appendix A. In the same manner as for higher order total functional

derivatives of the action integral of the matter, the following extension of Eq.(18) holds,

owing to Eqs.(A1) and (A2) in Appendix A,

δn+1Imat[ψ̂
†
α[A

ν ] , ψ̂α[A
ν ] , Aν ]

δAµn(xn) · · · δAµ1(x1)δAµ(x)

∣∣∣∣∣
Aν=A(0)ν

=
−1

c2
δnĵµ(x; [Aν ])

δAµn(xn) · · · δAµ1(x1)

∣∣∣∣∣
Aν=A(0)ν

. (19)

To define the single susceptibility, suppose the system under the non-perturbative EM

field A(0)µ(x) is exposed to the perturbative EM field ∆Aµ(x). The non-perturbative EM

field A(0)µ is a solution of the coupled equations Eqs.(4)-(7), namely, Heisenberg’s equation

and Maxwell’s wave equations, and is assumed to be a static solution existing in the ground

state. On the other hand, the total EM field A(0)µ + ∆Aµ is not necessarily a solution of

Maxwell’s wave equations, Eqs.(6) and (7), that is, ∆Aµ is introduced as a virtual variation.

The induced current density is the variation from the current density in the non-perturbative
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system:

ĵµ(x; [A(0)ν +∆Aν ])− ĵµ(x; [A(0)ν ])

=

∫
d4x1

δĵµ(x; [Aν ]))

δAµ1(x1)

∣∣∣∣∣
Aν=A(0)ν

∆Aµ1(x1)

+
1

2!

∫
d4x1

∫
d4x2

δ2ĵµ(x; [Aν ])

δAµ1(x1)δAµ2(x2)

∣∣∣∣∣
Aν=A(0)ν

∆Aµ1(x1)∆A
µ2(x2)

+
1

3!

∫
d4x1

∫
d4x2

∫
d4x3

δ3ĵµ(x; [Aν ])

δAµ1(x1)δAµ2(x2)δAµ3(x3)

∣∣∣∣∣
Aν=A(0)ν

∆Aµ1(x1)∆A
µ2(x2)∆A

µ3(x3)

+ · · · . (20)

From Eqs.(19) and (20), the linear and nonlinear single susceptibility operators are defined

as:

χ̂µµ1(x, x1) ≡ δĵµ(x; [Aν ])

δAµ1(x1)

∣∣∣∣∣
Aν=A(0)ν

= −c2 δ2Imat
δAµ(x)δAµ1(x1)

∣∣∣∣
Aν=A(0)ν

, (21)

χ̂µµ1 µ2(x, x1, x2) ≡ 1

2!

δ2ĵµ(x; [Aν ])

δAµ1(x1)δAµ2(x2)

∣∣∣∣∣
Aν=A(0)ν

,

=
−c2

2!

δ3Imat
δAµ(x)δAµ1(x1)δAµ2(x2)

∣∣∣∣
Aν=A(0)ν

(22)

χ̂µµ1 ···µn(x, x1, · · · , xn) ≡ 1

n!

δnĵµ(x; [Aν ])

δAµ1(x1) · · · δAµn(xn)

∣∣∣∣∣
Aν=A(0)ν

=
−c2

n!

δn+1Imat
δAµ(x)δAµ1(x1) · · · δAµn(xn)

∣∣∣∣
Aν=A(0)ν

, (23)

The susceptibility is defined using a small amount of variation, ∆Aµ. That is, the EM

field does not in general satisfy its Euler equation, Eq.(11), while the electron field operators

satisfy Eqs.(4) and (5). To evaluate the real EM field, ∆Aµ must be determined and a further

procedure is required to solve the coupled equations, with the constitutive equations in

terms of the susceptibility and Maxwell’s wave equations Eqs.(6) and (7). This procedure is

provided in a self-consistent manner, as performed by K.Cho[8] using his single susceptibility.
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III. CHARGE CONSERVATION LAW AND GAUGE INVARIANCE OF THE

SINGLE SUSCEPTIBILITY

In the last expressions in Eqs.(21)-(23) the coordinates x1, x2, · · · for the cause (the

perturbative EM field) and the coordinates x for the result (the induced current density)

are symmetric. Charge conservation for the induced charge density holds to each order of

the perturbation because of Eq.(10) or Eq.(14) and Eqs.(20)-(23); this is described by the

derivative of the coordinate for the result, x:

∂µχ̂
µ
µ1···(x, x1, · · · ) = 0 . (24)

The symmetry of the coordinates between the result and the cause leads to the following

equation concerning the derivative of any coordinate for the cause, e.g., x1 :

∂µ1χ̂µµ1···(x, x1, · · · ) = 0. (25)

Equation (25) means that the susceptibility guarantees that gauge invariance is respected.

That is, the resultant charge and current densities are independent of the chosen gauge.

To confirm this fact, consider the convolution integral of the single susceptibility with the

perturbative EM field, in a certain gauge, e.g.,∫
d4x1 χ̂

µ
µ1···(x, x1, · · · )∆A

µ1(x1). (26)

A gauge transformation of ∆A to ∆A′ in another gauge is expressed as :

∆Aµ1(x1) = ∆A′µ1(x1)− c ∂µ1η(x1), (27)

where η is the gauge function. Equation (26) leads to:∫
d4x1 χ̂

µ
µ1···(x, x1, · · · )∆A

µ1(x1)

=

∫
d4x1 χ̂

µ
µ1···(x, x1, · · · )∆A

′µ1(x1) + c

∫
d4x1 ∂

µ1χ̂µµ1···(x, x1, · · · )η(x1)

=

∫
d4x1 χ̂

µ
µ1···(x, x1, · · · )∆A

′µ1(x1). (28)

The contribution of the gauge function vanishes in the convolution integral. Thus, the gauge

of the perturbative EM field may be freely selected. This means that the susceptibility is

independent of the chosen gauge and, in practice, one may select a gauge that is most

convenient for calculation.
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IV. SINGLE SUSCEPTIBILITY IN THE FORM OF HEISENBERG OPERATOR

In this section, the linear and nonlinear single susceptibilities in the form of Heisen-

berg operators are derived using an expansion of the retarded product in Hamiltonian

formulation[12]. The Heisenberg operator of four-element current density, i.e., ĵµ(x) =

(cρ̂(x), ĵ(x)) is:

ĵµ(x) =


cqψ̂†α(x)ψ̂α(x) for µ = 0,

ψ̂†α(x)
q

2m

(
ℏ
i
(−∂µ)− q

c
Aµ(x)

)
ψ̂α(x) + h.c. for µ = 1, 2, 3 .

(29)

In Eq.(2), if the factor iℏψ̂†α(x) of the first term is regarded as the canonical momentum

of ψ̂α(x), then the Hamiltonian density may be determined as the Legendre transformation

from the Lagrangian density, that is:

Ĥ ≡
∫
d3x

1

2m

(
ℏ
−i
∂i − qAi(x)

)
ψ̂†α(x)

(
ℏ
i
∂i − qAi(x)

)
ψ̂α(x) + qϕ(x) ψ̂†α(x)ψ̂α(x).

(30)

This Hamiltonian governs the motion of electron field operators. Assuming that the non-

perturbative EM field ϕ(0),A(0) is the static EM field existing in the ground state of a

many-electron system, the Hamiltonian, Ĥ may be separated into a non-perturbative part,

Ĥ(0) and a perturbative part, V̂ as follows:

Ĥ(0) ≡
∫
d3x

1

2m

(
ℏ
−i
∂i − qA

(0)
i (x)

)
ψ̂†α(x) ·

(
ℏ
i
∂i − qA

(0)
i (x)

)
ψ̂α(x) + qϕ(0)(x) ψ̂†α(x)ψ̂α(x)

+ v(AUX)(x) ψ̂†α(x)ψ̂α(x), (31)

V̂ (t) ≡ Ĥ − Ĥ(0) =

∫
d3x v̂(x),

=

∫
d3x

{
∆ϕ(x) qψ̂†α(x)ψ̂α(x)−∆Ai(x)

q

2m

(
ψ̂†α(x)

(
ℏ
i
∂i − qA

(0)
i (x)

)
ψ̂α(x) + h.c.

)
+

q

2m
∆Ai(x)∆Ai(x) qψ̂

†
α(x)ψ̂α(x)

}
=

∫
d3x

{
1

c
∆Aµ(x) ĵµ(x)

∣∣∣
A=A(0)

− q

2mc3
δ̃ µ

′

µ ∆Aµ(x)∆Aµ′(x)ĵ0(x)

}
, (32)

where δ̃ µ
′

µ =

 1 for µ = µ′ = 1, 2, 3 ,

0 otherwise .
(33)

The auxiliary potential, v(AUX)(x) effectively represents for the quantum many-electron effect

(the exchange-correlation effect); this fact will be explained in the next section. The factor

14



ĵµ(x)
∣∣∣
A=A(0)

in Eq.(32) is the current density Eq.(29), with the explicitly-appeared VP being

replaced by that in the non-perturbed system. The tensor Eq.(33) represents the non-

relativistic effect. Actually, this tensor is the analogue of the four-element Kronecker delta,

but brings inequality of the temporal and spatial coordinates.

Here, the field operators in the interaction picture (the asymptotic field operators)

ψ̂
(in)†
α , ψ̂

(in)
α are governed by the non-perturbative Hamiltonian Ĥ(0) and coincide with the

field operators in the Heisenberg picture, ψ̂†α, ψ̂α at the infinite past time, t→ −∞, assuming

the adiabatic switch-on. The unitary operator Û(t,−∞) is the time-evolution operator of

the states in the interaction picture, and relates the operators between the Heisenberg and

interaction pictures as follows:

ψ̂α(x) = Û−1(t,−∞)ψ̂(in)
α (x)Û(t,−∞), (34)

ψ̂†α(x) = Û−1(t,−∞)ψ̂(in)†
α (x)Û(t,−∞),

where Û(t,−∞) = lim
t0→−∞

Û(t, t0) = lim
t0→−∞

T̂ e
1
iℏ

∫ t
t0
dt′V̂ (in)(t′)

,

V̂ (in)(t′) ≡ V̂ ([ψ̂(in) †
α , ψ̂(in)

α ]; t′)

Combining Eq.(34) and Eq.(29), the four-element current density operator in the interac-

tion picture may be defined as: ĵ(in)µ(x) = (cρ̂(in)(x), ĵ(in)(x)). These charge and current

densities do not satisfy the charge conservation law, except for A = A(0), and are merely

convenient tools used for obtaining the expansion of the retarded product of the Heisenberg

operators.

ĵµ(x) = Û−1(t,−∞)ĵ(in)µ(x)Û(t,−∞), (35)

ĵ(in)µ(x) =


c qψ̂

(in)†
α (x) ψ̂

(in)
α (x) for µ = 0,

ψ̂(in)†
α (x)

q

2m

(
ℏ
i
(−∂µ)− q

c
Aµ(x)

)
ψ̂(in)
α (x) + h.c. for µ = 1, 2, 3 .

(36)

To obtain the perturbative expansion (the retarded product series) of the Heisenberg oper-

ators, let us introduce an operator in the intermediate picture, where Û(t, t0) will be used

instead of Û(t,−∞):

ρ̂•(x; t0) = Û−1(t, t0) q ψ̂
(in)†
α (x) ψ̂(in)

α (x)Û(t, t0),

ĵ•i (x; t0) = Û−1(t, t0)
q

2m
ψ̂(in)†
α (x)

(
ℏ
i
∂i − qAi(x)

)
ψ̂(in)
α (x)Û(t, t0) + h.c..

The corresponding four-element current density is

ĵ•µ(x; t0) = (cρ̂•(x; t0), ĵ
•(x; t0))

15



As t0 → −∞, these operators coincide with those of the Heisenberg picture, while at t0 = t,

they coincide with those of the interaction picture:

ĵ•µ(x;−∞) = ĵµ(x), (37)

ĵ•µ(x; t) = ĵ(in)µ(x). (38)

Next, let’s investigate the time evolution of ĵ•µ as a function of t0.

∂t0 ĵ
•µ(x; t0) = {∂t0Û−1(t, t0)}ĵ(in)µ(x)Û(t, t0) + Û−1(t, t0)ĵ

(in)µ(x){∂t0Û(t, t0)}

=
1

iℏ
V̂ (in)(t0)Û

−1(t, t0)ĵ
(in)µ(x)Û(t, t0) + Û−1(t, t0)ĵ

(in)µ(x)Û(t, t0)
−1

iℏ
V̂ (in)(t0)

=
−1

iℏ

[
ĵ•µ(x; t0), V̂

(in)(t0)
]

Integrating over [t0, t], approximating iteratively using Eq.(38), and changing the region of

multi-integration, we obtain:

ĵ•µ(x; t0) = ĵ(in)µ(x) +
1

iℏ

∫ t

t0

dt1

[
ĵ•µ(x; t1), V̂

(in)(t1)
]

= ĵ(in)µ(x) +
1

iℏ

∫ t

t0

dt1

[
ĵ(in)µ(x), V̂ (in)(t1)

]
+

(
1

iℏ

)2 ∫ t

t0

dt1

∫ t

t1

dt2

[[
ĵ(in)µ(x), V̂ (in)(t2)

]
, V̂ (in)(t1)

]
+

(
1

iℏ

)3 ∫ t

t0

dt1

∫ t

t1

dt2

∫ t

t2

dt3

[[[
ĵ(in)µ(x), V̂ (in)(t3)

]
, V̂ (in)(t2)

]
, V̂ (in)(t1)

]
+ · · ·

= ĵ(in)µ(x) +
1

iℏ

∫ t

t0

dt1

[
ĵ(in)µ(x), V̂ (in)(t1)

]
+

(
1

iℏ

)2 ∫ t

t0

dt1

∫ t1

t0

dt2

[[
ĵ(in)µ(x), V̂ (in)(t1)

]
, V̂ (in)(t2)

]
+

(
1

iℏ

)3 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

[[[
ĵ(in)µ(x), V̂ (in)(t1)

]
, V̂ (in)(t2)

]
, V̂ (in)(t3)

]
+ · · ·

Then, taking the limit t0 → −∞, the above equation yields the retarded product of the

Heisenberg operators, as follows:

ĵµ(x) = ĵ(in)µ(x) +
1

iℏc

∫
ct1∈(−∞,ct]

d4x 1

[
ĵ(in)µ(x), v̂(in)(x1)

]
+

(
1

iℏc

)2 ∫
ct1∈(−∞,ct]

d4x 1

∫
ct2∈(−∞,ct1]

d4x 2

[[
ĵ(in)µ(x), v̂(in)(x1)

]
, v̂(in)(x2)

]
+

(
1

iℏc

)3 ∫
ct1∈(−∞,ct]

d4x 1

∫
ct2∈(−∞,ct1]

d4x 2

∫
ct3∈(−∞,ct2]

d4x 3

[[[
ĵ(in)µ(x), v̂(in)(x1)

]
, v̂(in)(x2)

]
, v̂(in)(x3)

]
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+ · · · (39)

where V̂ (in)(t) =

∫
d3x v̂(in)(x) ,

v̂(in)(x) =
1

c
∆Aµ(x) ĵ(in0)µ (x)− q

2mc3
δ̃ µ

′

µ ∆Aµ(x)∆Aµ′(x) ĵ
(in0)
0 (x) , (40)

ĵ(in)µ(x) = ĵ(in0)µ(x)− q

mc2
δ̃ µµ′∆A

µ′(x) ĵ(in0) 0(x) , (41)

and ĵ(in0)µ(x) is the current density in the interaction picture, that is, Eq.(36) with the

VP being replaced by the non-perturbed system. Equation (40) is obtained from Eq.(32),

replacing ψ̂α, ψ̂
†
α by ψ̂

(in)
α , ψ̂

(in) †
α , respectively. Next, let us derive the single susceptibility

in the form of Heisenberg operator by the functional derivative of Eq.(39) with respect to

the EM potential. In Equation (39), the dependence of the EM potential through ĵ(in)µ(x)

in Eq.(36) is of zeroth and first order for µ ∈ {1, 2, 3}, and dependence through v̂(in)(x1)

is of first and second order. The linear single susceptibility operator comes from the A1-

dependence, which exists in the first and second terms of Eq.(39) :

χ̂µµ1(x, x1) =
δĵµ(x)

δAµ1(x1)

∣∣∣∣∣
A=A(0)

=
−q
mc2

δ̃µµ1δ
4(x− x1) ĵ

(in0) 0(x) +
1

iℏc2
θ(ct− ct1)

[
ĵ(in0)µ(x), ĵ(in0)µ1(x1)

]
, (42)

where ĵ(in0)µ(x) = ĵ(in)µ(x)
∣∣∣
A=A(0)

.

The Heisenberg operators of the nonlinear single susceptibilities, to second and higher

order, are as follows. To avoid any confusion in the case of two times coinciding, the long

and explicit expressions are given, without using the time ordering operator.

2! χ̂µµ1µ2(x, x1, x2) =
δ2ĵµ(x)

δAµ1(x1)δAµ2(x2)

∣∣∣∣∣
A=A(0)

=
1

iℏc2
−q
mc2

{
δ(ct− ct1)θ(ct− ct2) δ̃µµ1δ

3(x− x1)
[
ĵ(in0) 0(x), ĵ(in0)µ2(x2)

]
+δ(ct− ct2)θ(ct− ct1) δ̃µµ2δ

3(x− x2)
[
ĵ(in0) 0(x), ĵ(in0)µ1(x1)

]
+ θ(ct− ct1)δ(ct1 − ct2)δ̃µ1 µ2δ

3(x1 − x2)
[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]}
+

(
1

iℏc2

)2 {
θ(ct− ct1)θ(ct1 − ct2)

[[
ĵ(in0)µ(x), ĵ(in0)µ1(x1)

]
, ĵ(in0)µ2(x2)

]
+ θ(ct− ct2)θ(ct2 − ct1)

[[
ĵ(in0)µ(x), ĵ(in0)µ2(x2)

]
, ĵ(in0)µ1(x1)

]}
. (43)
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3! χ̂µµ1µ2µ3(x, x1, x2, x3) =
δ3ĵµ(x)

δAµ1(x1)δAµ2(x2)δAµ3(x3)

∣∣∣∣∣
A=A(0)

=
1

iℏc2

(
−q
mc2

)2

{
θ(ct− ct2)δ(ct− ct1)δ(ct2 − ct3)δ̃

µ
µ1
δ3(x− x1)δ̃µ2 µ3δ

3(x2 − x3)
[
ĵ(in0) 0(x), ĵ

(in0)
0(x2)

]
+θ(ct− ct3)δ(ct− ct2)δ(ct3 − ct1)δ̃

µ
µ2
δ3(x− x2)δ̃µ3 µ1δ

3(x3 − x1)
[
ĵ(in0) 0(x), ĵ

(in0)
0(x3)

]
+ θ(ct− ct1)δ(ct− ct3)δ(ct1 − ct2)δ̃

µ
µ3
δ3(x− x3)δ̃µ1 µ2δ

3(x1 − x2)
[
ĵ(in0) 0(x), ĵ

(in0)
0(x1)

]}
+

(
1

iℏc2

)2 −q
mc2{

δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)δ̃
µ
µ1
δ3(x− x1)

[[
ĵ(in0) 0(x), ĵ(in0)µ2(x2)

]
, ĵ(in0)µ3(x3)

]
+δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)δ̃

µ
µ1
δ3(x− x1)

[[
ĵ(in0) 0(x), ĵ(in0)µ3(x3)

]
, ĵ(in0)µ2(x2)

]
+δ(ct− ct2)θ(ct2 − ct3)θ(ct3 − ct1)δ̃

µ
µ2
δ3(x− x2)

[[
ĵ(in0) 0(x), ĵ(in0)µ3(x3)

]
, ĵ(in0)µ1(x1)

]
+δ(ct− ct2)θ(ct2 − ct1)θ(ct1 − ct3)δ̃

µ
µ2
δ3(x− x2)

[[
ĵ(in0) 0(x), ĵ(in0)µ1(x1)

]
, ĵ(in0)µ3(x3)

]
+δ(ct− ct3)θ(ct3 − ct1)θ(ct1 − ct2)δ̃

µ
µ3
δ3(x− x3)

[[
ĵ(in0) 0(x), ĵ(in0)µ1(x1)

]
, ĵ(in0)µ2(x2)

]
+δ(ct− ct3)θ(ct3 − ct2)θ(ct2 − ct1)δ̃

µ
µ3
δ3(x− x3)

[[
ĵ(in0) 0(x), ĵ(in0)µ2(x2)

]
, ĵ(in0)µ1(x1)

]
+θ(ct− ct1)δ(ct1 − ct2)θ(ct2 − ct3)δ̃µ1 µ2δ

3(x1 − x2)
[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ3(x3)

]
+θ(ct− ct2)δ(ct2 − ct3)θ(ct3 − ct1)δ̃µ2 µ3δ

3(x2 − x3)
[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x2)

]
, ĵ(in0)µ1(x1)

]
+θ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2)δ̃µ3 µ1δ

3(x3 − x1)
[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x3)

]
, ĵ(in0)µ2(x2)

]
+θ(ct− ct1)θ(ct1 − ct2)δ(ct2 − ct3)δ̃µ2 µ3δ

3(x2 − x3)
[[
ĵ(in0)µ(x), ĵ(in0)µ1(x1)

]
, ĵ

(in0)
0 (x2)

]
+θ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)δ̃µ3 µ1δ

3(x3 − x1)
[[
ĵ(in0)µ(x), ĵ(in0)µ2(x2)

]
, ĵ

(in0)
0 (x3)

]
+θ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2)δ̃µ1 µ2δ

3(x1 − x2)
[[
ĵ(in0)µ(x), ĵ(in0)µ3(x3)

]
, ĵ

(in0)
0 (x1)

]}
+

(
1

iℏc2

)3

{
θ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)

[[[
ĵ(in0)µ(x), ĵ(in0)µ1(x1)

]
, ĵ(in0)µ2(x2)

]
, ĵ(in0)µ3(x3)

]
+θ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)

[[[
ĵ(in0)µ(x), ĵ(in0)µ1(x1)

]
, ĵ(in0)µ3(x3)

]
, ĵ(in0)µ2(x2)

]
+θ(ct− ct2)θ(ct2 − ct3)θ(ct3 − ct1)

[[[
ĵ(in0)µ(x), ĵ(in0)µ2(x2)

]
, ĵ(in0)µ3(x3)

]
, ĵ(in0)µ1(x1)

]
+θ(ct− ct2)θ(ct2 − ct1)θ(ct1 − ct3)

[[[
ĵ(in0)µ(x), ĵ(in0)µ2(x2)

]
, ĵ(in0)µ1(x1)

]
, ĵ(in0)µ3(x3)

]
+θ(ct− ct3)θ(ct3 − ct1)θ(ct1 − ct2)

[[[
ĵ(in0)µ(x), ĵ(in0)µ3(x3)

]
, ĵ(in0)µ1(x1)

]
, ĵ(in0)µ2(x2)

]
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+θ(ct− ct3)θ(ct3 − ct2)θ(ct2 − ct1)
[[[

ĵ(in0)µ(x), ĵ(in0)µ3(x3)
]
, ĵ(in0)µ2(x2)

]
, ĵ(in0)µ1(x1)

]}
.(44)

The charge conservation, Eq.(24) and gauge invariance, Eq.(25) are respected in Eqs.(42)-

(44). This fact is successfully checked after long and tedious calculations; a supplementary

document is provided for details.

V. THE GROUND STATE IN DENSITY FUNCTIONAL THEORY AND SINGLE

SUSCEPTIBILITY

The linear and nonlinear single susceptibilities are the expectation values of the corre-

sponding operators, Eqs.(42)-(44), using the ground state in the non-perturbed electron

system, which is specified by the simplified conditions in this paper:

A(x) = A(0)(x) = 0, j(EXT)(x) = 0, ϕ(x) = ϕ(0)(x) and ρ(EXT)(x) are static. (45)

Let us explain how density functional theory[13, 14] may allow us to prepare the ground

state and the complete set of the states in a many-electron system, refining the naive idea in

Ref. [1]. For that purpose, we need the electron field operators together with the SP and VP

satisfying the coupled equations, Eqs.(4)-(9). However, in the semiclassical treatment of the

present theory, Eqs.(8) and (9) are replaced with their expectation values using the ground

state, which we seek now on. Due to this procedure, the quantum many-electron effect, the

so-called exchange-correlation effect is ignored. Therefore, the solution of Eqs.(4)-(9) as it

is may not reproduce the electron charge density of the proper ground state, ρGS(r), which

is obtained using the ordinary Hamiltonian including the two-body Coulomb interaction,

converted from the SP under the Coulomb gauge. Such the electron density ρGS(r), in turn,

brings about the proper SP ϕ(0)(x) under the Coulomb gauge. Suppose that the proper

electron charge density ρGS(r) is already known under the ordinary Hamiltonian.

Now, we like to seek for the ground state |0⟩ in need, adjusting the auxiliary potential

v(AUX)(r) to make the electron charge density fit the proper one:

⟨0|ρ̂(x)|0⟩ = ρGS(r). (46)

Such a situation in Eq.(46) is assumed by Kohn and Sham in the density functional

theory[14]. That is, Eqs.(4) and (5) are equivalent to Eq.(2.8) in Ref.[14] [the Kohn-Sham

equation], if v(AUX)(r) is regarded as the so-called exchange-correlation potential.
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For details, one may prepare the spin-orbital function φk(r) (k, α stands for the orbital

and spin states) as the eigenstate of the Kohn-Sham equation with the eigenenergy ℏωk.

Under the conditions of Eq.(45), the Kohn-Sham equation is,

0 =

(
ℏωk − qϕ(0)(r)− 1

2m

ℏ
i
∂i ·

ℏ
i
∂i − v(AUX)(r)

)
φk(r), (47)

where v(AUX)(r) is set to the exchange-correlation potential, that guarantees Eq.(46). Then,

ψ̂α(x) = ψ̂
(in0)
α (x) =

∑
k φk(r) â

(in0)
kα (t) satisfies Eq.(4) under the condition Eq.(45), where

â
(in0)
kα is the operator to annihilate the electron associated with the spin-orbital φk(r) in

the non-perturbative system. Considering {φk(r)} as a complete set of the one-electron

functional space, the ground state with the electron number n in the present theory is

constructed as the single Slater determinant,

|0⟩ = lim
t0→−∞

1√
n!

∏
kα

â
(in0) †
kα (t0) |vac⟩ , (48)

where |vac⟩ is the vacuum state, and the indecies kα scan over the n spin-orbitals from the

lowest eigenenergies. Furthermore, under the fixed v(AUX)(r) and ϕ(0)(r), one may consider

all the possible combination of n spin-orbitals and obtain the normalized orthogonal complete

set {|m⟩|m = 0, 1, 2, · · · } in terms of all the possible single Slater determinants.

On the above logic, one should know the proper electron charge density ρGS(r) beforehand

to determine v(AUX)(r), which is the universal functional of the electron density[13, 14]. In

practice, however, one may solve the Kohn-Sham equation, possibly under the local density

approximation for v(AUX)(r), and reconsider the resulting charge density as ρGS(r).

The expectation value of the single susceptibility operator is, ⟨0|χ̂µµ1···(x, x1, · · · )|0⟩, and,

for example, the linear susceptibility becomes:

⟨0|χ̂µµ1(x, x1)|0⟩ =
−q
mc2

δ̃µµ1δ
4(x− x1) ⟨0|ĵ(in0) 0(x)|0⟩

+
1

iℏc2
θ(ct− ct1)⟨0|

[
ĵ(in0)µ(x), ĵ(in0)µ1(x1)

]
|0⟩ . (49)

Next, to evaluate the products of two (or more) current density operators, e.g., the second

term in Eq.(49), we may use the projection operator 1̂ =
∑

m |m⟩⟨m|. Now, the expectation
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value in the second term of Eq.(49) becomes,

⟨0|
[
ĵ(in0)µ(x), ĵ(in0)µ1(x1)

]
|0⟩

=
∑
m

{
⟨0|ĵ(in0)µ(x)|m⟩⟨m|ĵ(in0)µ1(x1)|0⟩ − ⟨0|ĵ(in0)µ1(x1)|m⟩⟨m|ĵ(in0)µ(x)|0⟩

}
=
∑
m

lim
t0→∞

{
⟨0|e

−1
iℏ Ĥ

(0)(t−t0)ĵ(in0)µ(x)|t=t0e
1
iℏ Ĥ

(0)(t−t0)|m⟩⟨m|e
−1
iℏ Ĥ

(0)(t1−t0)ĵ(in0)µ1(x1)|t1=t0e
1
iℏ Ĥ

(0)(t1−t0)|0⟩

− ⟨0|e
−1
iℏ Ĥ

(0)(t1−t0)ĵ(in0)µ1(x1)|t1=t0e
1
iℏ Ĥ

(0)(t1−t0)|m⟩⟨m|e
−1
iℏ Ĥ

(0)(t−t0)ĵ(in0)µ(x)|t=t0e
1
iℏ Ĥ

(0)(t−t0)|0⟩
}

=
∑
m

{
e

1
iℏ (Em−E0)(t−t1)⟨0|ĵ(in0)µ(x)|t=−∞|m⟩⟨m|ĵ(in0)µ1(x1)|t1=−∞|0⟩

− e
−1
iℏ (Em−E0)(t−t1)⟨0|ĵ(in0)µ1(x1)|t1=−∞|m⟩⟨m|ĵ(in0)µ(x)|t=−∞|0⟩

}
. (50)

In the induced charge and current densities obtained from the convolution integral of Eq.(50)

with the perturbative EM field, the energy denominator will appear as shown in §VI.

In the above theoretical framework, |m⟩’s are simply the members of the complete set,

and, in principle, do not carry physical meaning of excited states of a many-electron system.

Considering that the density functional theory concerns only the ground state of the many-

electron system, the above treatment is a sound application of density functional theory

to the response theory adequate for NFO. Remark that the variational principle based on

Eq.(1) cannot determine the auxiliary potential, v(AUX)(x) but is determined with the help

of another theory, namely, the density functional theory.

As a summary, the quantum many-electron effect is temporally ignored in the present

semiclassical theory, but is compensated with the support of the density functional theory.

In other words, the SP inherently existing in the electron system is separated as ϕ(0)(x) and

v(AUX)(r), and the SP incidence may be treated equally with the VP incidence. Note that,

ϕ(0)(x) is under the Coulomb gauge but the SP and VP incidences may be gauge-free, that

is, the present response theory is still free from gauge-fixing.

VI. APPLICATION: A LOGICAL FALLACY TO USE THE ELECTRIC FIELD IN

NEAR-FIELD OPTICS

Under non-resonant conditions in the optical near field, non-metallic materials cause

various phenomena not observed in conventional optics, such as highly efficient light emis-

sion from indirect-transition-type semiconductors (LED[17, 18] and Laser[18, 19]), chem-
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ical reaction with insufficient photon energy (chemical vapor deposition[20], optical NF

lithography[21], optical NF etching[22]), frequency up-conversion[23, 24], non-adiabatic

effect beyond forbidden transition (local energy concentration[25], nano-photonic gate

device[26]), and gigantic magneto-optical rotation of the LED[18, 27].

These experimental results draw attention to a fundamental role of the non-resonant

condition in NFO. We have no complete answer at this stage but the application of the

present response theory to a many-electron system in NFO shows a logical fallacy to use the

electric field and the electric permittivity, and the necessity to use the EM potential and

the associated single susceptibility. The discussion of the one-electron system appeared in

Ref.[1], but is concisely reviewed below in §VIB-§VIE because the many-electron version in

§VIF may be simply a recast of the one-electron version, owing to the density functional

theory. For the readability, calculation details are given in Appendix B.

A. Classification of optical systems

First, let us classify the optical systems. The two systems under near- and far-field

incidence conditions in FIG.1 are subdivided into two classes depending on the near- or

far-field observation condition. These four classes are listed in TABLE I, together with a

summary of the results mentioned below. In particular, the systems of (I′) and (II′) are the

limiting cases of null longitudinal incidence of the systems (I) and (II), respectively. Thus, in

the systems (I′) and (II′), the longitudinal response vanishes and the difference in response

may not be observed. In the following, therefore, we focus mainly on systems (I) and (II),

in which longitudinal incidence exists.

B. Susceptibilities associated with longitudinal and transverse electric fields

Applying the present linear response theory and the long wave approximation (LWA) to

the spinless one-electron system with two levels on a small scale, the induced charge and

current densities (as a result of the response), ∆ρ(r, t) and ∆j(r, t), are described as the

total derivative with respect to the longitudinal and transverse electric fields (as the cause

of the response), ∆E(ℓ)(0, t) and ∆E(t)(0, t), where 0 is the representative position in the
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TABLE I: Classification of optical systems by distance from the target material to the light source

and distance from that to the observation point, together with a summary of the results; the

validity of the electric field as the cause of the response.

Near-field observation Far-field observation

Source:∆ρ and ∆j Source: ∆j

Near-field incidence :

∆E(ℓ) +∆E(t)

�
�

�
�

(I) NF optical system

non-resonant / resonant

�
�

�
�

(II) NF optical system

non-resonant / resonant

Validity of the electric field NG / OK OK / OK

Far-field incidence :

∆E(t)

�
�

�
�

(I′) NF optical system

non-resonant / resonant

�
�

�
�

(II′)conventional optical system

non-resonant / resonant

Validity of the electric field OK / OK OK / OK

electron system under the LWA. The derivations are given in §B1 and the results are,

∆ρ(r, t) = χ
ρ←(ℓ)
j (r, ω)∆E

(ℓ)
j (0, t) + χ

ρ←(t)
j (r, ω)∆E

(t)
j (0, t) , (51)

∆ji(r, t) = χ
j←(ℓ)
ij (r, ω)∆Ė

(ℓ)
j (0, t) + χ

j←(t)
ij (r, ω)∆Ė

(t)
j (0, t) , (52)

where the partial derivative coefficients, χ······(r, ω)’s are susceptibilities associated with the

longitudinal and transversal electric fields. In Eq.(52), the time derivatives of the two types

of electric fields, namely, ∆Ė
(ℓ)
j (0, t) and ∆Ė

(t)
j (0, t), are regarded as the causes, instead of

the two types of electric fields themselves. The magnetic response will appear in the higher

order of the LWA and vanishes in Eqs.(51) and (52) representing the leading order; see

Refs.[4, 5] and §VIG. For the present spinless electron system, the electron field operators,

ψ̂†α(x), ψ̂α(x) is reconsidered as ψ̂†(x), ψ̂(x), respectively, eliminating the index of the spin

state, α.

To evaluate the susceptibilities in Eqs.(51) and (52), the two levels are assumed to be

the ground and excited states in the non-perturbed system with eigenenergies, ℏω0 and

ℏω1, and orbitals, φ0(r) and φ1(r), respectively. Those orbitals are assumed to be bound

states expressed by real functions, carry well-defined and distinct spatial parities (even and

odd parities), and form the normalized orthogonal complete set. The excitation energy is

ℏ∆ω1 ≡ ℏω1−ℏω0 > 0; this finite excitation energy means that the target is a non-metallic

material, such as a molecule, nano-structured semiconductor and insulator.
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The susceptibilities in Eqs.(51) and (52) are derived in §B1, and those leading to the

induced charge density result in the following:

χ
ρ←(ℓ)
j (r, ω) =χ

ρ←(t)
j (r, ω) = 2q2

η

η2 − 1

1

ℏω
Dj φ0(r)φ1(r) , (53)

where η ≡ℏ∆ω1

ℏω
=

excitation energy

photon energy
, and (54)

Di ≡
∫
d3r φ1(r) ri φ0(r) . (55)

This means that the responses to the longitudinal and transverse electric fields are common,

such that the induced charge density has a linear relationship with the total electric field,

namely, ∆ρ(r, t) = χ
ρ←(ℓ) or (t)
j (r, ω)

(
∆E

(ℓ)
j (0, t) + ∆E

(t)
j (0, t)

)
.

The susceptibilities leading to the induced current density are not so simple and result

in the following:

χ
j←(ℓ)
ij (r, ω) =

q2ℏ2

m

1

η2 − 1

1

(ℏω)2
Dj (∂iφ1(r)φ0(r)− φ1(r)∂iφ0(r)) , (56)

χ
j←(t)
ij (r, ω) =η2 χ

j←(ℓ)
ij (r, ω)− q2ℏ2

m

1

(ℏω)2
φ0(r)φ0(r) . (57)

The susceptibility to the transverse electric field, Eq.(57), is composed of two terms. The

first term, namely, the resonant term, includes the energy denominator enhanced under the

resonant condition, η ≃ 1, as in the susceptibility to the longitudinal electric field, Eq.(56).

The second term, namely, the non-resonant term, does not include such a resonance factor.

C. Equal responses under the resonant condition

Under the condition η ≃ 1 in all cases in TABLE I, Eq.(57) is dominated by the resonant

term (the first term) over the non-resonant term (the second term) and asymptotically equals

Eq.(56).

χ
j←(t)
ij (r, ω) ≃ χ

j←(ℓ)
ij (r, ω) . (58)

Equation (58) together with Eq.(53) reveal the equivalency of the responses to the longitu-

dinal and transverse electric fields, so that the total electric field is regarded as the cause of

the response in all the optical systems under the resonant condition listed in TABLE I.
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D. Equal responses under the far-field observation condition

In the system (II) and (II′) in TABLE I, the far field to be observed is insensitive to

the details of the source but is determined by the spatial average of the source. Under the

LWA, such an average can be achieved by the spatial average of the susceptibilities. Detailed

calculations are shown in §B2 and the results are as follows:

χ
ρ←(ℓ)
j (r, ω) = χ

ρ←(t)
j (r, ω) = 0 , (59)

χ
j←(ℓ)
ij (r, ω) = χ

j←(t)
ij (r, ω) = δi j

q2ℏ2

mV
1

(ℏ∆ω1) 2 − (ℏω)2
, (60)

where the overline represents the spatial average and V is the volume of the target material.

From Eqs.(59) and (60), one may not observe different responses to the two types of inci-

dences under the far-field observation condition. The null response represented in Eq.(59)

is reasonable because the induced charge density yields the longitudinal electric field, which

has a non-radiative nature and vanishes in the far-field regime.

E. Unequal responses under the non-resonant, NF incidence, and NF observation

conditions

The different responses to the longitudinal and transverse electric fields claimed in §I B

may be detected only in the system (I) in TABLE I under the non-resonant condition,

which is just the compliment to the popular optical systems under the resonant condition

or the far-field incidence condition or the far-field observation condition. In the NF optical

system (I) with a non-metallic material under the non-resonant condition, the total electric

field is not the cause of the response; therefore, the response may not be described by the

ordinary constitutive equation, namely, the linear relationship between the polarization and

”electric field” via the electric permittivity, so that the single susceptibility is essential to

treat separately the longitudinal and transverse incidences.

F. Extension to the many-electron system

The above one-electron model is very simple and the responses may be modified in a

many-electron system or a low-symmetry system. However, the difference in the responses
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to the two types of electric fields originates in the non-relativistic nature of the system (as

stated in §I B), and should survive in actual NF optical systems with non-metallic mate-

rials (the materials with finite excitation energy). Actually, the results revealed in §VIB-

§VIE are applicable to the corresponding many-electron system, considering the auxiliary

potential v(AUX)(x) to construct the orbitals using the Kohn-Sham equation (46), and re-

placing the complete orthogonal set composed of the one-electron ground and excited states,

{â(in0) †0 (−∞)|vac⟩, â(in0) †1 (−∞)|vac⟩} (−∞ means the time of the infinite past) to the corre-

sponding set, composed of two single Slater determinants, {|0⟩, â(in0) †1 (−∞)â
(in0)
0 (−∞)|0⟩},

where |0⟩ is the ground state in the density functional theory as defined in §V, and

â
(in0)
0 [, â

(in0) †
0 ] and â

(in0)
1 [, â

(in0) †
1 ] are the annihilation [and creation] operators associated

by the the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecu-

lar orbital (LUMO), respectively, determined by the Kohn-Sham equation (46). Owing to

the density functional theory, recasting the formulation in the one-electron system brings

that in the many-electron system, if the HOMO and LUMO dominate the excitation.

As a result, the many-electron system of a non-metallic material under the non-resonant,

NF incidence, and NF observation conditions may not be described in terms of the electric

field and the associated permittivity. Instead, the EM potential and the single susceptibility

are essential.

G. Comparison with the existing theories

In NFO, the response to the longitudinal electric field is discussed in Chap. 5 in Ref.[5]

and Chap. 9 in Ref.[9], as mentioned in §I C. The present work is a further comparison of

the responses to the two-types of electric field, considering the non-resonant condition.

Another logical fallacy to use the electric and magnetic fields is pointed out by Cho,

as briefly mentioned in §I B. In Refs.[4, 5], Cho derived a Taylor series of the nonlocal

response function[8] under the LWA, and assigned the electric permittivity and magnetic

permeability in the macroscopic constitutive equation as the term of order O(ka)0 (the

leading order) and O(ka)2, respectively, where ka≪ 1, 2π/k is the light wavelength, and a

is the representative size of the material. Furthermore, he pointed out that the ordinary two

susceptibilities are irrational because the separability of the electric and magnetic responses

not applicable and the term of order O(ka)1 appears in a chiral symmetric system, including
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a NF optical system with a low-symmetric nanostructure. The present demonstration is

concerned with the logical fallacy, which appears in the electric response (the leading order

from the viewpoint of Cho) in NFO under a non-resonant condition.

H. A remark on applying the finite differential time domain (FDTD) method to

NF optical systems

The macroscopic constitutive equations in terms of the electron permittivity and mag-

netic permeability have been widely employed to calculate the optical near field in the FDTD

method[16]. One may notice that the permittivity in the FDTD method carries a simple

spatial dependence and leads to some quantitative error. Actually, the microscopic sus-

ceptibilities, for example, Eq.(53), Eq.(56), and Eq.(57), have rippling spatial distributions

originating from the orbitals.

In the case of the NF optical system (I) in TABLE I with a non-metallic material under

the non-resonant condition, the situation is more serious because the concept electric field is

not available, such that it is a logical fallacy to use the macroscopic constitutive equation.

Thus, a novel simulation method is necessary, in particular, for the NF optical system with

a non-metallic material.

I. Why this fallacy has been missed for a long time?

Why has the comparison of responses to the two types of electric fields not been addressed

in NF optical theory? First, in the long history of optics, the NF optical system (I) in

TABLE I under a non-resonant condition has been out of focus. Such a system could not

be resolved until the technical difficulty of NF observation was overcome. Additionally,

resonance phenomena continue to attract attention. Furthermore, even in NFO, there has

been less emphasis on non-metallic materials, as opposed to metallic materials, which are

essential for plasmonics.

The second reason is that the ordinary Hamiltonian for a many-electron system does not

include the longitudinal electric field, which is rewritten to the two-body Coulomb interac-

tion, as stated in §I C. With this Hamiltonian, the non-linear response to the longitudinal

electric field (the SP under the Coulomb gauge) incidence accompanies the Coulomb inter-
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action, and is ignored or unequally treated compared with the response to the transverse

electric field (the VP under the Coulomb gauge).

J. Summary of this section

In the NF optical system (I) in TABLE I, the responses to the longitudinal and transverse

electric fields should be separately treated, and in a more general view point beyond the

LWA and linear response theory, it is essential to employ the linear and nonlinear single

susceptibilities, considering both of the SP and VP equally as the cause of response.

To the best of our knowledge, the NF optical system with non-metallic material under the

non-resonant condition, namely, the system (I) in TABLE I, is the third example that cannot

be described in terms of the electric field and/or magnetic field, after the superconductor

system with the Meissner effect[2] and the electron system with the Aharonov-Bohm effect[3],

as mentioned in §IA.

VII. SUMMARY

1. Aiming to investigate electron response in NFO, we define the linear and nonlinear

single susceptibilities, equally considering the SP and VP as the cause of the response.

2. It is shown that the present single linear and nonlinear susceptibilities guarantee charge

conservation and gauge invariance.

3. The linear and nonlinear susceptibilities in the form of Heisenberg operators are derived

systematically by means of the functional derivatives of the action integral of the

matter with respect to the SP and VP.

4. It is shown that the density functional theory may be used in the non-perturbed system

and support to prepare the ground state and a complete set of states, which in turn

are used to evaluate the expectation values of the operators of the linear and nonlinear

susceptibilities.

5. Applying the present response theory to a simplified model system, it is shown that

the single susceptibility is essential to describe the response of the optical system
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with non-metallic material under the non-resonant, NF incidence, and NF observation

conditions.

Some remaining problems meriting further investigation include:

1. Applying the present response theory to actual non-resonant NF optical systems with

a non-metallic material in Refs.[17]-[27] to explore the mechanism leading to the out-

standing experimental results such as the high-efficient light emission and gigantic

magneto-optical effect, etc.

2. Developing a constitutive equation based on the single susceptibility which can aid

experimentalists in NFO as a substitute for the electric permittivity and magnetic

permeability of ordinary optics.

3. Developing a practical simulator for the many-electron system in NFO, using the

present response theory with the support of the density functional theory, as the

replacement of the FDTD simulation method,

4. Extending the response theory to treat the spin-polarization system in NFO, based on

the Pauli or Dirac equation.
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Appendix A: Optimization of Electron Field Operators Under Arbitrary EM Po-

tential

Under a given EM potential, Aν , the electron field operator optimized to satisfy Eq.(4)

is considered as the functional of Aν , i.e., ψ̂α(x; [A
ν ]), ψ̂†α(x; [A

ν ]). Then, the next equation

holds for n = 0, 1, 2, · · · :

δn

δAµn(xn) · · · δAµ1(x1)
δψ̂†α(x

′)\δImat

∣∣∣∣
Aν=A(0)ν

= 0, (A1)

δn

δAµn(xn) · · · δAµ1(x1)
δImat/δψ̂α(x

′)

∣∣∣∣
Aν=A(0)ν

= 0. (A2)

Proof: Equation (4) should be hold both under A(0)ν(non-perturbative EM potential) and

under A(0)ν +∆Aν , therefore,

δψ̂†α(x
′)\δImat

∣∣∣
(ψ̂α,ψ̂

†
α,Aν)=(ψ̂α[A(0)ν+∆Aν ],ψ̂†

α[A(0)ν+∆Aν ],A(0)ν+∆Aν)
= 0,

Taylor expansion leads to:

∞∑
n=0

1

n!

∫
d4x n · · ·

∫
d4x 1

δn
(
δψ̂†α(x

′)\δImat

)
δAµn(xn) · · · δAµ1(x1)

∣∣∣∣∣∣
(ψ̂α,ψ̂

†
α,Aν)=(ψ̂α[A(0)ν ],ψ̂†

α[A(0)ν ],A(0)ν)

∆Aµ1(x1) · · ·∆Aµn(xn) = 0,

Considering this equation as the identity with respect to ∆Aµ(x) results in Eq.(A1). Equa-

tion (A2) is proved in the same manner, starting from Eq.(5).

Appendix B: Calculation details in §VI

Here we provide the calculation details in §VI, including the derivation of the unfamiliar

relationship Eq.(B14) between two types of dipole transition matrix elements.

1. Derivation of the constitutive equations, Eqs.(51) and (52), and the suscepti-

bilities, Eq.(53), Eqs.(56) and (57)

The incident SP and VP, ∆ϕ(r, t) and ∆Ai(r, t), are assumed to be monochromatic with

the angular momentum ω, and are expressed using the Coulomb gauge and LWA as follows:

∆ϕ(r, t) = ∆ϕ(r) cosωt =
(
∆ϕ(0)−∆E(ℓ)(0) · r

)
cosωt , (B1)

∆A(r, t) = ∆A(r) sin(ωt+ ξ) = − 1

ω
∆E(t)(0) sin(ωt+ ξ) , (B2)
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where ξ is the phase difference between the two incident potentials. In the spinless one-

electron system, the linear response theory with Eqs.(20) and (42) leads to the Heisenberg

operators of the induced charge and current densities, as follows in the three-element repre-

sentation:

∆ρ̂(r, t) =

∫ t

−∞
dt1

∫
d3r1

{
1

iℏ
[
ρ̂(in0)(r, t) , ρ̂(in0)(r1, t1)

]
∆ϕ(r1, t1)

− 1

iℏ

[
ρ̂(in0)(r, t) , ĵ

(in0)
i1

(r1, t1)
]
∆Ai1(r1, t1)

}
, (B3)

∆ĵi(r, t) =

∫ t

−∞
dt1

∫
d3r1

{
1

iℏ

[
ĵ
(in0)
i (r, t) , ρ̂(in0)(r1, t1)

]
∆ϕ(r1, t1)

− 1

iℏ

[
ĵ
(in0)
i (r, t) , ĵ

(in0)
i1

(r1, t1)
]
∆Ai1(r1, t1)

}
− q

m
ρ̂(in0)(r, t)∆Ai(r, t) .

(B4)

The last term in Eq.(B4) originates from the non-relativistic nature of the system and is

needed to maintain charge conservation law.

Evaluating the expectation value of Eqs.(B3) and (B4) using the ground state [φ0(r) in

Eq.(B8)] and substituting Eqs.(B1) and (B2) leads to Eqs.(51) and (52), in which the causes

of the responses are the two types of electric fields and their temporal derivatives, defined

as

∆E
(ℓ)
j (0, t) ≡ ∆E

(ℓ)
j (0) cosωt , ∆E

(t)
j (0, t) ≡ ∆E

(t)
j (0) cos(ωt+ ξ) , (B5)

∆Ė
(ℓ)
j (0, t) ≡ ∂

∂t
∆E

(ℓ)
j (0, t) , ∆Ė

(t)
j (0, t) ≡ ∂

∂t
∆E

(t)
j (0, t) . (B6)

In the above, no magnetic response appears because it is the higher order in the LWA

as revealed by Cho [4, 5]. To obtain susceptibilities, Eq.(53),Eqs.(56) and (57) using the

two-level model, we take the expectation values of Eqs.(B3) and (B4) using the ground

state φ0(r), insert the projection operator [the left side of the second equation in Eq.(B7)],

between the two operators in the commutators, and integrate over the domains of t1 and

r1. We assume that the two orbitals are real functions, and form the normalized orthogonal

complete set: ∫
d3r φm(r)φn(r) = δmn ,

∑
m

φm(r)φm(r
′) = δ3(r− r′) , (B7)

where φm(r) satisfies,

Ĥ(0)φm(r) = ℏωm φm(r) , (m = 0, 1) . (B8)
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Having real orbitals infers even temporal parity, such that there is a null VP (or mag-

netic field) in the non-perturbed system. To derive the susceptibilities associated with the

transversal electric field in Eqs.(53) and (57), we use the well-known linear relationship

between the two types of dipole transition matrix elements,

Ci ≡
∫
d3r (∂iφ1(r)φ0(r)− φ1(r)∂iφ0(r)) =

2m

ℏ2
ℏ∆ω1 Di . (B9)

Equation (B9) is derived from the matrix element of Heisenberg equation for dipole charge

density:

∂

∂t
rj ρ̂

(in0)(r, t) =
1

iℏ

[
rj ρ̂

(in0)(r, t) , Ĥ(0)
]
, (B10)

using ρ̂(in0)(r, t) = e−
Ĥ(0)t

iℏ ρ̂(in0)(r, 0)e+
Ĥ(0)t

iℏ and the projection operator, i.e., the second

equation in Eq.(B7) satisfying Eq.(B8).

2. Derivation of the spatial average of the susceptibilities, Eqs.(59) and (60)

The following replacements in Eq.(53), Eqs.(56) and (57) lead to Eqs.(59) and (60):

φ0(r)φ1(r) −→ 1

V

∫
d3r φ0(r)φ1(r) = 0 , (B11)

∂iφ1(r)φ0(r)− φ1(r)∂iφ0(r) −→ 1

V

∫
d3r ∂iφ1(r)φ0(r)− φ1(r)∂iφ0(r) =

1

V
Ci , (B12)

φ0(r)φ0(r) −→ 1

V

∫
d3r φ0(r)φ0(r) =

1

V
. (B13)

To derive Eq.(60), we additionally use the trade-off relationship between the two types of

dipole transition matrix elements,

Di Cj = δi j. (B14)

This is effective in the two-level system with well-defined parity and derived from the

quantum-mechanical commutation relationship:

[ri ,
ℏ
i
∂j] = iℏ δij , i.e., ri

(
ℏ
i
∂j · · ·

)
+

ℏ
−i
∂j (ri · · · ) = iℏδij · · · . (B15)

Inserting the projection operator between ri and
ℏ
i
∂j, and eliminating the null integrals

caused by mismatched parity result in Eq.(B14). From Eq.(B9) and Eq.(B14), Di and Ci
are specified as

Di =
1

Ci
=

ℏ√
2m ℏ∆ω1

. (B16)
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(We do not use Eq.(B16) in this paper.)
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S. CHARGE CONSERVATION LAW AND GAUGE INVARIANCE OF LINEAR

AND NONLINEAR FOUR-ELEMENT SINGLE SUSCEPTIBILITY

S 1. Linear single susceptibility: Eq.(40) in the main text

To show that four-element linear single susceptibility guarantees the charge conservation

law, Eq.(24) in the main text, suppose the four-element divergence of Eq.(40) in the main

text, considering ∂µĵ
(in0)µ(x) = 0,

∂µχ̂
µ
µ1
(x, x1) =

−q
mc2

δ(ct− ct1)δ̃
µ
µ1
∂µ

(
δ3(x− x1) ĵ

(in0) 0(x)
)

(S1)

+
1

iℏc2
δ(ct− ct1)

[
ĵ(in0) 0(x), ĵ(in0)µ1(x1)

]
= 0.

In the second term of the second hand, we use the following commutation relationship at

the same time :

δ(ct− ct1)
[
ĵ(in0) 0(x), ĵ(in0)µ1(x1)

]
= −ihc2 −q

mc2
δ(ct− ct1)δ̃

µ
µ1
∂µ

(
δ3(x− x1)ĵ

(in0) 0(x)
)
(S2)

= −ihc2 −q
mc2

δ(ct− ct1)δ̃
µ
µ1

(
∂µδ

3(x− x1)
)
ĵ(in0) 0(x1)

The proof of Eq.(S2) is as follows: If µ1 = 0 in the left hand side of Equation (S2), it is the

commutator between charge density operator at the same time, and is zero.[
ĵ(in0) 0(x), ĵ

(in0)
0 (x1)

]
t1=t

= c2q2
[
ψ̂†α(x)ψ̂α(x) , ψ̂

†
α(x1)ψ̂α(x1)

]
t1=t

= 0. (S3)

One may check Eq.(S3) by a straightforward calculation using the anti-commutation relation

of electron field operators at the same time,[
ψ̂α(x) , ψ̂

†
α(x1)

]
+, t1=t

= δ3(x− x1).

Next, if µ1 = i ∈ {1, 2, 3} in the left hand side of Equation (S2), the commutator in

three-element representation becomes as follows:[
ĵ(in0) 0(x), ĵ

(in0)
µ1=i

(x1)
]
t1=t

= −cq q

2m

[
ψ̂†α(x)ψ̂α(x) , ψ̂

†
α(x1)

(
ℏ
i
∂1i − qA

(0)
i (x1)

)
ψ̂α(x1)

+

((
ℏ
−i
∂1i − qA

(0)
i (x1)

)
ψ̂†α(x1)

)
ψ̂α(x1)

]
t1=t

(S4)
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As the term includes qA
(0)
i (x1) is zero following Eq.(S3), let us treat the term including the

derivative.[
ĵ(in0) 0(x), ĵ

(in0)
µ1=i

(x1)
]
t1=t

= −cq
2
iℏc2

−q
mc2

lim
x•1→x1

∂1 •i

[
ψ̂†α(x)ψ̂α(x) , ψ̂

†
α(x1)ψ̂α(x

•
1)− ψ̂†α(x

•
1)ψ̂α(x1)

]
t1=t

= −cq
2
iℏc2

−q
mc2

lim
x•1→x1

∂1 •i

(
δ3(x− x1)

(
ψ̂†α(x)ψ̂α(x

•
1) + ψ̂†α(x

•
1)ψ̂α(x)

)
−δ3(x− x•1)

(
ψ̂†α(x)ψ̂α(x1) + ψ̂†α(x1)ψ̂α(x)

))
t1=t

= −cq
2
iℏc2

−q
mc2

δ3(x− x1)∂i

(
ψ̂†α(x)ψ̂α(x1) + ψ̂†α(x1)ψ̂α(x)

)
+
(
∂iδ

3(x− x1)
) (
ψ̂†α(x)ψ̂α(x1) + ψ̂†α(x1)ψ̂α(x)

)
t1=t

= −cq
2
iℏc2

−q
mc2

∂i

(
δ3(x− x1)

(
ψ̂†α(x)ψ̂α(x1) + ψ̂†α(x1)ψ̂α(x)

))
t1=t

= −cqiℏc2 −q
mc2

∂i

(
δ3(x− x1)ψ̂

†
α(x)ψ̂α(x)

)
= −iℏc2 −q

mc2
δ̃ µµ1∂µ

(
δ3(x− x1)ĵ

(in0) 0(x)
)

(S5)

= −cqiℏc2 −q
mc2

∂i

(
δ3(x− x1)ψ̂

†
α(x1)ψ̂α(x1)

)
t1=t
= −iℏc2 −q

mc2
δ̃ µµ1
(
∂µδ

3(x− x1)
)
ĵ(in0) 0(x1)t1=t ,

(S6)

where the last two-way expressions Eqs.(S5) and (S6) are in four-element representation

instead of three-element representation. Summarizing Eqs.(S3) and (S6) result in Eq.(S2).

As a result, the present four-element linear susceptibility,Eq.(40) in the main text maintains

the charge conservation law, Eq.(24) in the main text.

For the proof for the gauge invariance, Eq.(25) in the main text, of the linear susceptibility,

suppose the four-element divergence with respect to x1. Then, using Eq.(S2) with the

replacement, x↔ x1 and the relation, δ̃µ1µ ∂µ1 = −δ̃µµ1∂
µ1 , one may obtain:

∂µ1χ̂µµ1(x, x1) =
−q
mc2

δ(ct− ct1)
(
δ̃µµ1∂

µ1δ3(x− x1)
)
ĵ(in0) 0(x) (S7)

− 1

iℏc2
δ(ct− ct1)

[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
= 0.

As shown above, the linear susceptibility Eq.(40) in the main text maintains the gauge

invariance Eq.(25) in the main text.
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S 2. Second order nonlinear single susceptibility: Eq.(41) in the main text

Next, let us show that the charge conservation law is satisfied by the second order nonlin-

ear single susceptibility, Eq.(41) in the main text. Operating ∂µ = δ0µ∂0 + δ1µ∂1 + δ2µ∂2 + δ3µ∂3

to Eq.(41) in the main text and considering ∂µĵ
(in0)µ(x) = 0 (the charge conservation law for

the current density operator in the non-interacting system), the surviving terms are those

the operator ∂µ operates on the step function or delta function in front of the commutator,

and operates on ĵ(in0) 0(x) in the commutator.

∂µ 2! χ̂
µ
µ1µ2

(x, x1, x2) =

1

iℏc2
−q
mc2

{
δ(ct− ct1)θ(ct− ct2) δ̃µµ1∂µ

(
δ3(x− x1)

[
ĵ(in0) 0(x), ĵ(in0)µ2(x2)

])
(S8a)

+δ(ct− ct2)θ(ct− ct1) δ̃µµ2∂µ

(
δ3(x− x2)

[
ĵ(in0) 0(x), ĵ(in0)µ1(x1)

])
(S8b)

+ δ(ct− ct1)δ(ct1 − ct2)δ̃µ1 µ2 δ3(x1 − x2)
[
ĵ(in0) 0(x), ĵ

(in0)
0 (x1)

]}
(S8c)

+

(
1

iℏc2

)2 {
δ(ct− ct1)θ(ct1 − ct2)

[[
ĵ(in0) 0(x), ĵ(in0)µ1(x1)

]
, ĵ(in0)µ2(x2)

]
(S8d)

+ δ(ct− ct2)θ(ct2 − ct1)
[[
ĵ(in0) 0(x), ĵ(in0)µ2(x2)

]
, ĵ(in0)µ1(x1)

]}
. (S8e)

Applying Eq.(S2), the third term (S8c) vanishes, and the fourth and fifth terms (S8d) and

(S8e) cancel the first and second terms (S8a) and (S8b), respectively.

As a result, the second order nonlinear single susceptibility operator Eq.(41) in the main

text maintains the charge conservation law, Eq.(24) in the main text.

To check the gauge invariance of the second order nonlinear single susceptibility operator,

let us operate ∂µ1 to Eq.(41) in the main text.

∂µ1 2! χ̂µµ1µ2(x, x1, x2) =

1

iℏc2
−q
mc2

{
δ(ct− ct1)θ(ct− ct2)

(
δ̃µµ1∂

µ1δ3(x− x1)
) [
ĵ(in0) 0(x), ĵ(in0)µ2(x2)

]
(S9a)

−δ(ct− ct2)δ(ct− ct1) δ̃µµ2 δ3(x− x2)
[
ĵ(in0) 0(x), ĵ

(in0)
0 (x1)

]
(S9b)

+ θ(ct− ct1)δ(ct1 − ct2)δ̃µ1 µ2∂
µ1
(
δ3(x1 − x2)

[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

])}
(S9c)

+

(
1

iℏc2

)2

{(−δ(ct− ct1)θ(ct1 − ct2) + θ(ct− ct1)δ(ct1 − ct2))[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ2(x2)

]
(S9d)

− θ(ct− ct2)δ(ct2 − ct1)
[[
ĵ(in0)µ(x), ĵ(in0)µ2(x2)

]
, ĵ

(in0)
0 (x1)

]}
. (S9e)
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Replacing the fifth term (S9e) using the next Jacobi identity:[[
ĵ(in0)µ(x), ĵ(in0)µ2(x2)

]
, ĵ

(in0)
0 (x1)

]
(S10)

= −
[[
ĵ(in0)µ2(x2), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ(x)

]
−
[[
ĵ
(in0)

0 (x1), ĵ
(in0)µ(x)

]
, ĵ(in0)µ2(x2)

]
,

then, the first term in the right hand side of Eq.(S10) with Eq.(S2) offsets the term (S9c),

and the second term in the right hand side of Eq.(S10) offsets the second term in (S9d).

The first term in (S9d) offsets the first term, (S9a), considering the commutation relation

at the simultaneous time, δ(ct − ct1)
[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
and Eq.(S2)(remark the change

of upper or lower subscript). The second term (S9b) vanishes by means of Eq.(S2).

As a result, the second order nonlinear single susceptibility operator Eq.(41) in the main

text maintains the gauge invariance, Eq.(25) in the main text.

S 3. Third order nonlinear single susceptibility: Eq.(42) in the main text

With respect to the third order nonlinear single susceptibility, let us check the charge

conservation law. Operating ∂µ to Eq.(42) in the main text,

∂µ 3! χ̂
µ
µ1µ2µ3

(x, x1, x2, x3) =

1

iℏc2

(
−q

mc2

)2

{
θ(ct− ct2)δ(ct− ct1)δ(ct2 − ct3)δ̃µ2 µ3δ

3(x2 − x3)δ̃
µ
µ1
∂µ

(
δ3(x− x1)

[
ĵ(in0) 0(x), ĵ

(in0)
0(x2)

])
(S11a)

+θ(ct− ct3)δ(ct− ct2)δ(ct3 − ct1)δ̃µ3 µ1δ
3(x3 − x1)δ̃

µ
µ2
∂µ

(
δ3(x− x2)

[
ĵ(in0) 0(x), ĵ

(in0)
0(x3)

])
(S11b)

+ θ(ct− ct1)δ(ct− ct3)δ(ct1 − ct2)δ̃µ1 µ2δ
3(x1 − x2)δ̃

µ
µ3
∂µ

(
δ3(x− x3)

[
ĵ(in0) 0(x), ĵ

(in0)
0(x1)

])}
(S11c)

+

(
1

iℏc2

)2 −q

mc2{
δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)δ̃

µ
µ1
∂µ

(
δ3(x− x1)

[[
ĵ(in0) 0(x), ĵ(in0)µ2

(x2)
]
, ĵ(in0)µ3

(x3)
])

(S11d)

+δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)δ̃
µ
µ1
∂µ

(
δ3(x− x1)

[[
ĵ(in0) 0(x), ĵ(in0)µ3

(x3)
]
, ĵ(in0)µ2

(x2)
])

(S11e)

+δ(ct− ct2)θ(ct2 − ct3)θ(ct3 − ct1)δ̃
µ
µ2
∂µ

(
δ3(x− x2)

[[
ĵ(in0) 0(x), ĵ(in0)µ3

(x3)
]
, ĵ(in0)µ1

(x1)
])

(S11f)

+δ(ct− ct2)θ(ct2 − ct1)θ(ct1 − ct3)δ̃
µ
µ2
∂µ

(
δ3(x− x2)

[[
ĵ(in0) 0(x), ĵ(in0)µ1

(x1)
]
, ĵ(in0)µ3

(x3)
])

(S11g)

+δ(ct− ct3)θ(ct3 − ct1)θ(ct1 − ct2)δ̃
µ
µ3
∂µ

(
δ3(x− x3)

[[
ĵ(in0) 0(x), ĵ(in0)µ1

(x1)
]
, ĵ(in0)µ2

(x2)
])

(S11h)

+δ(ct− ct3)θ(ct3 − ct2)θ(ct2 − ct1)δ̃
µ
µ3
∂µ

(
δ3(x− x3)

[[
ĵ(in0) 0(x), ĵ(in0)µ2

(x2)
]
, ĵ(in0)µ1

(x1)
])

(S11i)

+δ(ct− ct1)δ(ct1 − ct2)θ(ct2 − ct3)δ̃µ1 µ2δ
3(x1 − x2)

[[
ĵ(in0) 0(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ3

(x3)
]

(S11j)

5



+δ(ct− ct2)δ(ct2 − ct3)θ(ct3 − ct1)δ̃µ2 µ3δ
3(x2 − x3)

[[
ĵ(in0) 0(x), ĵ

(in0)
0 (x2)

]
, ĵ(in0)µ1

(x1)
]

(S11k)

+δ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2)δ̃µ3 µ1
δ3(x3 − x1)

[[
ĵ(in0) 0(x), ĵ

(in0)
0 (x3)

]
, ĵ(in0)µ2

(x2)
]

(S11l)

+δ(ct− ct1)θ(ct1 − ct2)δ(ct2 − ct3)δ̃µ2 µ3δ
3(x2 − x3)

[[
ĵ(in0) 0(x), ĵ(in0)µ1

(x1)
]
, ĵ

(in0)
0 (x2)

]
(S11m)

+δ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)δ̃µ3 µ1δ
3(x3 − x1)

[[
ĵ(in0) 0(x), ĵ(in0)µ2

(x2)
]
, ĵ

(in0)
0 (x3)

]
(S11n)

+δ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2)δ̃µ1 µ2δ
3(x1 − x2)

[[
ĵ(in0) 0(x), ĵ(in0)µ3

(x3)
]
, ĵ

(in0)
0 (x1)

]}
(S11o)

+

(
1

iℏc2

)3

{
δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)

[[[
ĵ(in0) 0(x), ĵ(in0)µ1

(x1)
]
, ĵ(in0)µ2

(x2)
]
, ĵ(in0)µ3

(x3)
]

(S11p)

+δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)
[[[

ĵ(in0) 0(x), ĵ(in0)µ1
(x1)

]
, ĵ(in0)µ3

(x3)
]
, ĵ(in0)µ2

(x2)
]

(S11q)

+δ(ct− ct2)θ(ct2 − ct3)θ(ct3 − ct1)
[[[

ĵ(in0) 0(x), ĵ(in0)µ2
(x2)

]
, ĵ(in0)µ3

(x3)
]
, ĵ(in0)µ1

(x1)
]

(S11r)

+δ(ct− ct2)θ(ct2 − ct1)θ(ct1 − ct3)
[[[

ĵ(in0) 0(x), ĵ(in0)µ2
(x2)

]
, ĵ(in0)µ1

(x1)
]
, ĵ(in0)µ3

(x3)
]

(S11s)

+δ(ct− ct3)θ(ct3 − ct1)θ(ct1 − ct2)
[[[

ĵ(in0) 0(x), ĵ(in0)µ3
(x3)

]
, ĵ(in0)µ1

(x1)
]
, ĵ(in0)µ2

(x2)
]

(S11t)

+δ(ct− ct3)θ(ct3 − ct2)θ(ct2 − ct1)
[[[

ĵ(in0) 0(x), ĵ(in0)µ3
(x3)

]
, ĵ(in0)µ2

(x2)
]
, ĵ(in0)µ1

(x1)
]}

. (S11u)

The term (S11p) offsets the term (S11d), applying Eq.(S2) to the most inner commutator in

(S11p). In the same manner, the terms (S11q)-(S11u),respectively, offsets the terms (S11e)-

(S11i), applying Eq.(S2). The terms (S11j)-(S11l) vanishes, applying Eq.(S2) to the inner

commutator at the simultaneous time. The term (S11m) offsets the term (S11a), applying

Eq.(S2) to the most inner commutator. In the same manner, the terms (S11n)-(S11o),

respectively, offsets (S11b)-(S11c), using Eq.(S2).

As a result, the third order nonlinear single susceptibility operator Eq.(42) in the main

text maintains the charge conservation law, Eq.(24) in the main text.

To check the gauge invariance of the third order nonlinear single susceptibility operator,

let us operate ∂µ1 to Eq.(42) in the main text.

∂µ1 3! χ̂µ
µ1µ2µ3

(x, x1, x2, x3) =

1

iℏc2

(
−q

mc2

)2

{
θ(ct− ct2)δ(ct− ct1)δ(ct2 − ct3)

(
δ̃µµ1

∂µ1δ3(x− x1)
)
δ̃µ2 µ3δ

3(x2 − x3)
[
ĵ(in0) 0(x), ĵ

(in0)
0(x2)

]
(S12a)

+θ(ct− ct3)δ(ct− ct2)δ(ct3 − ct1)δ̃
µ
µ2
δ3(x− x2)

(
δ̃µ3 µ1∂

µ1δ3(x3 − x1)
) [

ĵ(in0) 0(x), ĵ
(in0)

0(x3)
]
(S12b)

+ θ(ct− ct1)δ(ct− ct3)δ(ct1 − ct2)δ̃
µ
µ3
δ3(x− x3)

(
δ̃µ1 µ2∂

µ1δ3(x1 − x2)
[
ĵ(in0) 0(x), ĵ

(in0)
0(x1)

])}
(S12c)

+

(
1

iℏc2

)2 −q

mc2
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{
δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)

(
δ̃µµ1

∂µ1δ3(x− x1)
) [[

ĵ(in0) 0(x), ĵ(in0)µ2
(x2)

]
, ĵ(in0)µ3

(x3)
]

(S12d)

+δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)
(
δ̃µµ1

∂µ1δ3(x− x1)
) [[

ĵ(in0) 0(x), ĵ(in0)µ3
(x3)

]
, ĵ(in0)µ2

(x2)
]

(S12e)

−δ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)δ̃
µ
µ2
δ3(x− x2)

[[
ĵ(in0) 0(x), ĵ(in0)µ3

(x3)
]
, ĵ

(in0)
0 (x1)

]
(S12f)

+ (−δ(ct− ct2)δ(ct2 − ct1)θ(ct1 − ct3) + δ(ct− ct2)θ(ct2 − ct1)δ(ct1 − ct3))

δ̃µµ2
δ3(x− x2)

[[
ĵ(in0) 0(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ3

(x3)
]

(S12g)

+ (−δ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2) + δ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2))

δ̃µµ3
δ3(x− x3)

[[
ĵ(in0) 0(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ2

(x2)
]

(S12h)

−δ(ct− ct3)θ(ct3 − ct2)δ(ct2 − ct1)δ̃
µ
µ3
δ3(x− x3)

[[
ĵ(in0) 0(x), ĵ(in0)µ2

(x2)
]
, ĵ

(in0)
0 (x1)

]
(S12i)

+θ(ct− ct1)δ(ct1 − ct2)θ(ct2 − ct3)δ̃µ1 µ2∂
µ1

(
δ3(x1 − x2)

[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ3

(x3)
])

(S12j)

−θ(ct− ct2)δ(ct2 − ct3)δ(ct3 − ct1)δ̃µ2 µ3
δ3(x2 − x3)

[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x2)

]
, ĵ

(in0)
0 (x1)

]
(S12k)

+θ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2)δ̃µ3 µ1

(
∂µ1δ3(x3 − x1)

) [[
ĵ(in0)µ(x), ĵ

(in0)
0 (x3)

]
, ĵ(in0)µ2

(x2)
]
(S12l)

+ (−δ(ct− ct1)θ(ct1 − ct2)δ(ct2 − ct3) + θ(ct− ct1)δ(ct1 − ct2)δ(ct2 − ct3))

δ̃µ2 µ3δ
3(x2 − x3)

[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
, ĵ

(in0)
0 (x2)

]
(S12m)

+θ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)
(
δ̃µ3 µ1∂

µ1δ3(x3 − x1)
) [[

ĵ(in0)µ(x), ĵ(in0)µ2
(x2)

]
, ĵ

(in0)
0 (x3)

]
(S12n)

+θ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2)δ̃µ1 µ2∂
µ1

(
δ3(x1 − x2)

[[
ĵ(in0)µ(x), ĵ(in0)µ3

(x3)
]
, ĵ

(in0)
0 (x1)

])}
(S12o)

+

(
1

iℏc2

)3

{(−δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3) + θ(ct− ct1)δ(ct1 − ct2)θ(ct2 − ct3))[[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ2

(x2)
]
, ĵ(in0)µ3

(x3)
]

(S12p)

+ (−δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2) + θ(ct− ct1)δ(ct1 − ct3)θ(ct3 − ct2))[[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ3

(x3)
]
, ĵ(in0)µ2

(x2)
]

(S12q)

−θ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)
[[[

ĵ(in0)µ(x), ĵ(in0)µ2
(x2)

]
, ĵ(in0)µ3

(x3)
]
, ĵ

(in0)
0 (x1)

]
(S12r)

+ (−θ(ct− ct2)δ(ct2 − ct1)θ(ct1 − ct3) + θ(ct− ct2)θ(ct2 − ct1)δ(ct1 − ct3))[[[
ĵ(in0)µ(x), ĵ(in0)µ2

(x2)
]
, ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ3

(x3)
]

(S12s)

+ (−θ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2) + θ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2))[[[
ĵ(in0)µ(x), ĵ(in0)µ3

(x3)
]
, ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ2

(x2)
]

(S12t)

−θ(ct− ct3)θ(ct3 − ct2)δ(ct2 − ct1)
[[[

ĵ(in0)µ(x), ĵ(in0)µ3
(x3)

]
, ĵ(in0)µ2

(x2)
]
, ĵ

(in0)
0 (x1)

]}
. (S12u)
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In the following, we prove the next equation, which leads to the gauge invariance.

(S12p) + (S12d) +(S12j) +(S12s) +(S12r)+(S12n) = 0, (S13)

(S12q) + (S12e) +(S12l) +(S12t) +(S12u)+(S12o) = 0, (S14)

(S12m) + (S12a) +(S12k) = 0, (S15)

(S12i) + (S12c) +(S12h) = 0, (S16)

(S12f) + (S12b) +(S12g) = 0. (S17)

1. Eq.(S13): The first term of (S12p) offsets (S12d), using Eq.(S2). To the inner double

commutator in the second term of (S12p), the nest Jacobi identity is applied:[[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ2(x2)

]
, ĵ(in0)µ3(x3)

]
(S18)

= −
[[[

ĵ
(in0)

0 (x1), ĵ
(in0)
µ2
(x2)

]
, ĵ(in0)µ(x)

]
, ĵ(in0)µ3(x3)

]
−
[[[

ĵ(in0)µ2(x2), ĵ
(in0)µ(x)

]
, ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ3(x3)

]
.

Furthermore, the inner commutator (, assuming at the simultaneous time) in the first

term of Eq.(S18) , one may apply Eq.(S2). The part including this factor in the

second term of (S12p) offsets the term (S12j). In the second term of (S12p), the part

including the second term of Eq.(S18) offsets the first term of (S12s). Up to now,

(S12p)+(S12d)+(S12j)+ the first term of (S12s)= 0 has been shown.

Next, to the outer double commutator in the second term of (S12r), let us apply the

next Jacobi identity,[[[
ĵ(in0)µ(x), ĵ(in0)µ2(x2)

]
, ĵ(in0)µ3(x3)

]
, ĵ

(in0)
0 (x1)

]
(S19)

= −
[[
ĵ(in0)µ3(x3), ĵ

(in0)
0 (x1)

]
,
[
ĵ(in0)µ(x), ĵ(in0)µ2(x2)

]]
+
[[[

ĵ(in0)µ(x), ĵ(in0)µ2(x2)
]
, ĵ

(in0)
0 (x1)

]
, ĵ(in0)µ3(x3)

]
.

The commutator in the first term of Eq.(S19):
[
ĵ
(in0)
µ3(x3), ĵ

(in0)
0 (x1)

]
is the commutator

at the simultaneous time, therefore, we may use Eq.(S2). The part including this factor

in (S12r) offsets the term (S12n). In (S12r), the part including the second term of

Eq.(S19) offsets the second term of (S12s). Up to now, (S12r)+(S12n)+ the second

term of (S12s)= 0 is shown.

Together with the previous result, Eq.(S13) holds.

8



2. Eq.(S14): This equation is Eq.(S13) with the replacement x2 ↔ x3 and µ2 ↔ µ3,

therefore, Eq.(S14) holds.

3. Eq.(S15): The first term of (S12m) offsets (S12a), using Eq.(S2).

To the double commutator in the second term of (S12m), the nest Jacobi identity is

applied:[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x1)

]
, ĵ

(in0)
0 (x2)

]
(S20)

= −
[[
ĵ
(in0)

0 (x1), ĵ
(in0)

0 (x2)
]
, ĵ(in0)µ(x)

]
−
[[
ĵ
(in0)

0 (x2), ĵ
(in0)µ(x)

]
, ĵ

(in0)
0 (x1)

]
=
[[
ĵ(in0)µ(x), ĵ

(in0)
0 (x2)

]
, ĵ

(in0)
0 (x1)

]
In the above, we use the inner commutator (at the simulatenesou time) in the first

term of the second hand side becomes zero, using Eq.(S2). The second term of (S12m)

includes the factor of Eq.(S20) and offsets (S12k).

As a result, Eq.(S15) holds.

4. Eq.(S16): To the double commutator in (S12i), we apply the next Jacobi identity:[[
ĵ(in0) 0(x), ĵ(in0)µ2(x2)

]
, ĵ

(in0)
0 (x1)

]
(S21)

= −
[[
ĵ(in0)µ2(x2), ĵ

(in0)
0 (x1)

]
, ĵ(in0) 0(x)

]
−
[[
ĵ
(in0)

0 (x1), ĵ
(in0) 0(x)

]
, ĵ(in0)µ2(x2)

]
.

The inner commutator in the first term of Eq.(S21) is the commutator at the simul-

taneous time, therefore, we may use Eq.(S2). The part including this factor in (S12i)

offsets the term (S12c). In (S12i), the part including the second term of Eq.(S21)

offsets the second term of (S12h). The first term of (S12h) is zero, because the inner

commutator included in this term is commutator at the simultaneous time and leads

to zero, using Eq.(S2).

Therefore, Eq.(S16) holds.

5. Eq.(S17): This equation is Eq.(S16) with the replacement x2 ↔ x3 and µ2 ↔ µ3,

therefore, Eq.(S17) holds.

As the summery, Eqs.(S13)-(S17) hold and the third order nonlinear single susceptibility

Eq.(42) in the main text maintains the gauge invariance Eq.(25) in the main text.
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Photon localization revisited

Izumi Ojima∗

Otsu 520-0105, Japan
and

Hayato Saigo†
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Abstract

In the light of Newton-Wigner-Wightman theorem of localizability
question, we have proposed before a typical generation mechanism of
effective mass for photons to be localized in the form of polaritons
owing to photon-media interactions. In this paper, the general essence
of this example model is extracted in such a form as Quantum Field
Ontology associated with Eventualization Principle, which enables us
to explain the mutual relations, back and forth, between quantum fields
and various forms of particles in the localized form of the former.

1 Introduction

Extending the scope of our joint paper [24] whose essense is summarized in
1) and 2) below, we discuss in this paper the following points:

1) Starting from a specific problem of photon localization in the light
of Newton-Wigner-Wightman Theorem (Sec.2), we try here to clarify the
mathematical and conceptual relations among spatial points, localization
processes of physical systems into restricted regions in space (and time),
in contrast to the usual formulation dependent directly on the concepts
of particles and their masses (in a spacetime structure given in an a priori
way). In this context, Wightman’s mathematical formulation of the Newton-
Wigner paper plays an important role: On the basis of an imprimitivity
system on the 3-dimensional space, the absence of position observables is
shown to follow from the vanishing mass m = 0 of a free photon.

2) We encounter here a sharp conflict between the mathematically clear-
cut negative result and the actual existence of experimental devices for de-
tecting photons in quantum optics which is impossible without the spatial
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localization of detected photons. Fortunately, this conflict is resolved by the
presence of coupled modes of photons with material media which generates
non-trivial deviations of refractive index n from 1, or equivalently generates
the mass m > 0, in such typical example cases as “polaritons”, as will be
shown later (Sec.3.4).

3) Through the model example of polaritons, we learn that such funda-
mental issues as related with mass and particles as its carriers should be
viewed as something variable dependent on the contexts and situations sur-
rounding them. Thus, we need and can elaborate on highly philosophical
abstract questions like “what is a mass?” or “what are particles as mass
points?”, in mathematically accessible contexts. For this purpose, we cer-
tainly need to set up suitable theoretical and/or mathematical frameworks
and models so that they allow us to systematically control the dynamics of
our object systems coupled with their external systems. Once this coupling
scheme is established, the external systems can be seen to serve as reference
systems for the purpose of describing the object systems and the processes
carried out by them. Such a framework and methodology are available in
the form of the Tomita’s integral decomposition theorem (Sec. 4.3) viewed
from the standpoint of “quadrality scheme” based on “Micro-Macro duality”
(Sec. 3.2 & Sec. 4.2).

4) For instance, the delicate choice between 4-dimensional spacetime and
3-dimensional spatial setting up involved in Wightman’s theorem can be
naturally understood as the choice of pertinent variables to a given context.
In the light of Tomita’s theorem this issue is seen in such a form as the
choice between central vs. subcentral decomposition measures of a relevant
state. A satisfactory understanding of fundamental concepts of space (and
time) coordinates and velocities is attainable in the scheme and, at the same
time, crucial premise underlying such comprehension is the understanding
that these concepts are never among pre-existing attributes inherent in the
object system but are epigenetic properties emerging through what is to be
called the “eventualization processes” as will be explained in Sec.5. These
epigenetic aspects are closely related with the choices of different contexts
of placing an object system and the boundary conditions specifying various
different choices of subalgebras of central observables, reflected in the choices
of subcentral (or central) measures appearing in Tomita’s theorem (Sec.
4.3).

5) While the above explanation guarantees the naturality and generic-
ity of the polariton picture mentioned in 2), as one of the typical explicit
examples for making photons localizable, the freedom in choices of subcen-
tral measures clarifies their speciality in the spatial homogeneity of mass
generation. In fact, under such conditions that the spatial homogeneity is
not required, many such forms of photon localizations are allowed as Debye
shielding, various forms of dressed photons, among which cavity QED can
equally be understandable.
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6) Along this line of thought, it becomes also possible to compare and
unify various other forms of localizations and of their “leakages” at the same
time: For instance, the presence of non-vanishing mass m can be viewed as
an index of timelike and spacetime-homogeneous parameter of leakage from
spatial localization as exhibited by the decay rate ∝ e−mr of correlation
functions in clustering limit. On the other hand, the decay width Γ in the
energy spectrum can also be interpreted as a time-homogeneous parameter
of leakage from chronological localizations of resonance modes (as exhibited
through the decay rate ∝ e−Γ/2 of relaxation of correlations). (To be precise,
it is more appropriate to regard the inverse of m and Γ as leakages.) The
tunneling rate ∝

√
|E − V | can be interpreted as the leakage rate of spatial

localization materialized by the potential barrier V .
7) The universality, naturality and the necessity of the present stand-

point is verified by the above considerations in terms of subcentral measures
and of the corresponding commutative algebras B. On the basis of the bidi-
rectionality between quantum fields and particles, moreover, such a unified
viewpoint will be meaningful that the microscopic quantum systems consist-
ing of quantum fields can be controlled and designed from the macro side
via the control of quantum fields.

8) To make sure of the above possibility, it would be important to rec-
ognize the constitution of the macroscopic levels in close relations with the
microscopic quantum regimes. This question is answered in terms of the
word, “eventualization processes”, which can be mathematically described
as the filtered “cones” to amplify the connections between Macro and Micro
(which is analogous to the forcing method in the context of foudations of
mathematics), with Micro ends given by the dynamics of quantum fields and
Macro ones by the pointlike events as the apices of cones of eventualizations.

2 Newton-Wigner-Wightman Theorem

In 1949, Newton and Wigner [15] raised the question of localizability of single
free particles. They attempted to formulate the properties of the localized
states on the basis of natural requirements of relativistic covariance.

Physical quantities available in this formulation admitting direct physi-
cal meaning are restricted inevitably to the generators of Poincaré group
P↑+ = R4 o L↑+ (with L↑+ the orthochronous proper Lorentz group) which is
locally isomorphic to the semi-direct product H2(C)o SL(2,C) of the Jor-
dan algebra H2(C) of hermitian (2×2)-matrices and SL(2,C), consisting of
the energy-momentum vector Pµ and of the Lorentz generators Mµν (com-
posed of angular momenta Mij and of Lorentz boosts M0i). The problem is
then to find conditions under which “position operators” can naturally be
derived from the Poincaré generators (Pµ,Mµν). In [15], position operators
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have been shown to exist in massive cases in an essentially unique way for
“elementary” systems in the sense of the irreducibility of the corresponding
representations of P↑+ so that localizability of a state can be defined in terms
of such position operators. In massless cases, however, no localized states
are found to exist in the above sense. That was the beginning of the story.

Wightman [25] clarified the situation by recapturing the concept of “lo-
calization” in quite a general form as follows. In place of the usual ap-
proaches with unbounded generators of position operators, he has formu-
lated the problem in terms of their spectral resolution in the form of axioms
(i)-(iii) :

(i) The spectral resolution of position operators: It is defined by a family
B(R3) 3 ∆ 7−→ E(∆) ∈ Proj(H) of projection-valued measures E(∆)
in a Hilbert space H defined for each Borel subset ∆ of R3, character-
ized by the following properties (ia), (ib), (ic):

(ia) E(∆1 ∩∆2) = E(∆1)E(∆2);

(ib) E(∆1 ∪∆2) = E(∆1) + E(∆2), if ∆1 ∩∆2 = φ;

(ic) E(R3) = 1;

(ii) Physical interpretation of E(∆): When the system is prepared in a
state ω, the expectation value ω(E(∆)) of a spectral measure E(∆)
gives the probability for the system to be found in a localized region
∆;

(iii) Covariance of the spectral resolution: Under a transformation (a,R)
with a spatial rotation R followed by a spatial translation a, a Borel
subset ∆ is transformed into R∆ + a. The corresponding unitary im-
plementer is given in H by U(a,R), which represents (a,R) covariantly
on E in such a way that

E(∆) → E(R∆ + a) = U(a,R)E(∆)U(a,R)−1.

Note that, in spite of the relevance of the relativistic covariance, localiz-
ability discussed above is the localization of states in space at a given time
formulated in terms of spatial translations a and rotations R, respectively.
To understand the reason, one should imagine the situation with the axioms
(i)-(iii) replaced with those for the whole spacetime; then the CCR relations
hold between 4-momenta pµ and space-time coordinates xν , which implies
the Lebesgue spectrum covering the whole R4 for both observables p̂µ and
x̂ν . Therefore any such physical requirements as the spectrum condition or
as the mass spectrum cannot be imposed on the energy-momentum spec-
trum p̂µ, and hence, the concept of localizability in space-time does not
make sense.
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According to Mackey’s theory of induced representations, Wightman’s
formulation can easily be seen as the condition for the family of operators
{E(∆)} to constitute a system of imprimitivity ([12]) under the action of
the unitary representation U(a,R) in H of the three-dimensional Euclidean
group SE(3) := R3 o SO(3) given by the semi-direct product of the spatial
translations R3 and the rotation group SO(3). In a more algebraic form,
the pair (E, U) can also be viewed as a covariant W*-dynamical system
L∞(R3) x

τ
SE(3), [τ(a,R)(f)](x) := f(R−1(x − a)), given by the covariant

*-representation E : L∞(R3) 3 f 7−→ E(f) =
∫

f(x)dE(x) ∈ B(H), s.t.
E(χ∆) = E(∆), of the commutative algebra L∞(R3) generated by the posi-
tion operators acted on by SE(3) characterized by the covariance condition:

E(τ(a,R)(f)) = U(a,R)E(f)U(a,R)−1 (1)

for f ∈ L∞(R3), (a,R) ∈SE(3).

As will be seen later, this algebraic reformulation turns out to be useful
for constructing coupled systems of photon degrees of freedom with matter
systems, which play the crucial roles in observing or measuring the former in
the actual situations. Thus Wightman’s formulation of the Newton-Wigner
localizability problem is just to examine whether the Hilbert space H of the
representation (U,H) of SE(3) can accommodate a representation E of the
algebra L∞(R3) consisting of position operators, covariant under the action
of SE(3) in the sense of Eq. (1).

Applying Mackey’s general theory to the case of three-dimensional Eu-
clidean group SE(3), Wightman proved the following fundamental result as
a purely kinematical consequence:

Theorem 1 ([25], excerpt from theorem 6 and 7) A Lorentz covari-
ant massive system is always localizable. The only localizable massless ele-
mentary system (i.e. irreducible representation) has spin zero.

Corollary 2 A free photon is not localizable.

The essential mechanism causing (non-)localizability in the sense of Newton-
Wigner-Wightman can be found in the structure of Wigner’s little groups,
the stabilizer groups of standard 4-momenta on each type of P↑+-orbits in
p-space.

When m 6= 0, the little group corresponding to the residual degrees
of freedom in a rest frame is the group SO(3) of spatial rotations. As a
consequence, “the space of rest frames” becomes SO(1, 3)/SO(3) ∼= R3. The
physical meaning of this homeomorphism is just a correspondence between
a rest frame r ∈ SO(1, 3)/SO(3) for registering positions and a boost k ∈
SO(1, 3) required for transforming a fixed rest frame r0 to the chosen one r =
kr0. The universality (or, independence for the choice the frame) of positions
is recovered up to Compton wavelength h/(mc), again due to massiveness.
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Remark 3 Here the coordinates of rest frames just plays the role of the
order parameters (or, “sector parameters”) on each P↑+-orbit as the space
of “degenerate vacua” associated with certain of symmetry breaking, which
should play the roles of position operators appearing in the imprimitivity
system.

In sharp contrast, there is no rest frame for a massless particle: Its lit-
tle group is isomorphic to the two-dimensional Euclidean group SE(2) =
R2 o SO(2) (locally isomorphic to C o U(1)), whose rotational generator
corresponds to the helicity. Since the other two translation generators cor-
responding to gauge transformations span non-compact directions in distinc-
tion from the massive cases with a compact SO(3), the allowed representa-
tion (without indefinite inner product) is only the trivial one which leaves
the transverse modes invariant, and hence, the little group cannot provide
position operators in the massless case.

After the papers by Newton and Wigner and by Wightman, many discus-
sions have been developed around the photon localization problem. As far
as we know, the arguments seem to be divided into two opposite directions,
one relying on purely dynamical bases [8] and another on pure kinematics
[2], where it is almost impossible to find any meaningful agreements. Below
we propose an alternative strategy based on the concept of “effective mass”,
which can provide a reasonable reconciliation between these conflicting ideas
because of its “kinematical” nature arising from some dynamical origin.

3 Polariton as a Typical Model of Effective Mass
Generation

3.1 Physical roles played by coupled external system

In spite of the above theoretical difficulty in the localizability of photons,
however, it is a plain fact that almost no experiments can be performed
in quantum optics where photons must be registered by localized detec-
tors. To elaborate on this problem, we will see that it is indispensable to
reexamine the behaviour of a photon in composite systems coupled with
some external system such as material media constituting apparatus with-
out which any kind of measurement processes cannot make sense. For this
purpose, the above group-theoretical analysis of localizability of kinematical
nature should be extended to incorporate algebraic aspects involved in the
formation of a coupled dynamics between photons to be detected and the
measuring devices consisting of matters.

Our scheme of the localization for photons can be summarized as follows:

• Photons are coupled with external system into a composite system
with a coupled dynamics.
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• Positive effective mass emerges in the composite system.

• Once a positive effective mass appears, Wightman’s theorem itself pro-
vides the “kinematical basis” for the localization of a photon.

From our point of view, therefore, this theorem of Wightman’s inter-
preted traditionally as a no-go theorem against the localizability becomes
actually an affirmative support for it. It conveys such a strongly selective
meaning (which will be discussed in detail in Sec.4) that, whenever a photon
is localized, it should carry a non-zero effective mass.

In the next subsection, we explain the meaning of our scheme from a
physical point of view.

3.2 How to define effective mass of a photon

As a typical example of our scheme, we focus first on a photon interacting
with homogeneous medium, in the case of the monochromatic light with
angular frequency ω as a classical light wave. For simplicity, we neglect
here the effect of absorption, that is, the imaginary part of refractive index.
When a photon interacting with matter can be treated as a single particle,
it is natural to identify its velocity v with the “signal velocity” of light in
medium. The relativistic total energy E of the particle should be related to
v :=

√
v · v by its mass meff :

E =
meffc2

√
1− v2

c2

(2)

Since v is well known to be smaller than the light velocity c (theoretically or
experimentally), meff is positive (when the particle picture above is valid).
Then we may consider meff as the relativistic “effective (rest) mass of a
photon”, and identify its momentum p with

p =
meffv√
1− v2

c2

. (3)

Hence, as long as “an interacting photon” can be well approximated by a
single particle, it should be massive, according to which its “localization
problem” is resolved. The validity of this picture will be confirmed later in
the next subsection.

The concrete forms of energy/momentum are related to the Abraham-
Minkowski controversy [1, 14, 4] and modified versions of Einstein/de Broglie
formulae [24].

Our argument itself, however, does not depend on the energy/momentum
formulae. The only essential point is that a massless particle can be made
massive through some interactions. That is, while a free photon satisfies

E2
free − c2p2

free = 0, (4)
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an interacting photon satisfies

E2 − c2p2 = m2
effc4 > 0. (5)

To sum up, an “interacting photon” can gain a positive effective mass, while
a “free photon” remains massless! This is the key we have sought for. We
note, however, the present argument is based on the assumption that “a
photon dressed with interactions” can be viewed as a single particle. We
proceed to consolidate the validity of this picture, especially the existence of
particles whose effective mass is produced by the interactions, analogous to
Higgs mechanism: Such a universal model for photon localization certainly
exists, which is based on the concept of polariton, well known in optical and
solid physics.

3.3 Polariton picture

In these areas of physics, the propagation of light in a medium is viewed
as follows: By the interaction between light and matter, creation of an
“excition (an excited state of polarization field above the Fermi surface)”
and annihilation of a photon will be followed by annihilation of an exciton
and creation of a photon, · · · , and so on. This chain of processes itself
is often considered as the motion of particles called polaritons (in this case
“exciton-polaritons”), which constitute particles associated with the coupled
wave of the polarization wave and electromagnetic wave.

The concept of polariton has been introduced to develop a microscopic
theory of electromagnetic interactions in materials ([6], [10]). Injected pho-
tons become polaritons by the interaction with matter. As exiton-phonon
interaction is dissipative, the polariton picture gives a scenario of absorp-
tion. It has provided an approximation better than the scenarios without
it. Moreover, the group velocity of polaritons discussed below gives another
confirmation of the presence of an effective mass.

As is well known, permittivity ε(ω) is given by the following equality,

ε(ω) = n2 =
c2k2

ω2
, (6)

and hence, we can determine the dispersion relation (between frequency and
wave number) of polariton once the formula of permittivity is specified. In
general, this dispersion relation implies branching, analogous to the Higgs
mechanism. The signal pulse correponding to each branch can also be de-
tected in many experiments, for example, in [13] cited below.

In the simple case, the permittivity is given by the transverse frequency
ωT of exciton’s (lattice vibration) as follows:

ε(ω) = ε∞ +
ω2

T (εst − ε∞)
ω2

T − ω2
, (7)
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where ε∞ denotes limω→∞ ε(ω) and εst = ε(0) (static permittivity). With
a slight improvement through the wavenumber dependence of the exciton
energy, the theoretical result of polariton group velocity ∂ω

∂k < c based on
the above dispersion relation can explain satisfactorily experimental data
of the passing time of light in materials (for example, [13]). This strongly
supports the validity of the polariton picture.

From the above arguments, polaritons can be considered as a universal
model of the “interacting photons in a medium” in the previous section. The
positive mass of a polariton gives a solution to its “localization problem”.
Conversely, as the “consequence” of Wightman’s theorem, it follows that
“all” physically accessible photons as particles which can be localized are
more or less polaritons (or similar particles) because only the interaction
can give a photon its effective mass, if it does not violate particle picture.

4 Effective Mass Generation in General

4.1 Toward general situations

In the last subsection we have discussed that the interaction of photons with
media can cause their localization by giving effective masses to them. Then
a natural question arises: Is the exsistence of media a necessary condition
for the emergence of effectve photon mass? The answer is no: In fact, light
beams with finite transvese size have group velocities less than c.

In a recent publication [7], Giovannni et al., show experimentally that
even in vacuum photons (in the optical regime) travel at the speed less
than c when it is transversally structured, such as Bessel beams or Gaussian
beams, by measuring a change in the arrival time of time-correlated photon
pairs. They show a reduction in the velocity of photons in both a Bessel
beam and a focused Gaussian one. Their work highlights that, even in free
space, the invariance of the speed of light only applies to plane waves, i.e.,
free photons.

From our viewpoint, this result can be understood quite naturally in
the light of the Newton-Wigner-Wightman theorem. As we have seen, the
theorem states that every localizable elementary system (particle) with spin
must be massive. It implies that photons in the real world should travel
less than c, in any conditions, which makes the probability distribution of
its position well-defined without contradicting with the presence of spin.
Hence, transversally structured photons should become slow.

The scenario also applies to more general settings. Any kinds of bound-
ary conditions with finite volume (like cavity), or even nanoparticles in the
context of dressed photons [17], will make photons heavier and slower, even
without medium!
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4.2 Wightman’s theorem re-interpreted as the “basis” for
localization

Our general scheme of the localization for photons can be depicted as follows,
whose essense can be understood in accordance with the basic formulation
of “quadrality scheme” [20] underlying the Micro-Macro duality [18, 19]:

Localization of photons
⇑

Effective mass of photons =⇒ Change in kinematics
⇑

Dynamical interaction
between photons & external system

In order to actualize the physical properties of a given system such as pho-
tons driven by an invisible microscopic dynamics, it is necessary for it to be
coupled with some external measuring system through which a composite
system is formed. According to this formation of coupled dynamics, the
kinematics controlling the observed photons are modified and what can be
actually observed is a result of this changed kinematics, realized in our case
in the form of localized photons.

4.3 Tomita’s theorem of integral decomposition of a state

Before going into the details of mass generation mechanisms, we examine
here the theoretical framework relevant to our context. From the mathe-
matical viewpoint, an idealized form of constructing a coupled system of the
object system with an external reference one can be found conveniently in
Tomita’s theorem of integral decomposition of a state as follows:

Theorem 4 (Tomita [5]) For a state ω of a unital C*-algebra A, the fol-
lowing three sets are in a 1-to-1 correspondence:

1. subcentral measures µ (pseudo-)supported by the space FA of factor
states on A;

2. abelian von Neumann subalgebras B of the centre Zπω(A) = πω(A)′′ ∩
πω(A)′;

3. central projections C on Hω such that

CΩω = Ωω, Cπω(A)C ⊂ {Cπω(A)C}′. (8)

If µ, B and C are in the above correspondence, then the following rela-
tions hold:
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(i) B = {πω(A) ∪ {C}}′;
(ii) C = [BΩω]: projection operator onto the subspace spanned by BΩω;

(iii) µ(Â1Â2 · · · Ân) = 〈Ωω| πω(A1)C πω(A2)C · · ·Cπω(An)Ωω〉
for A1, A2, · · · , An ∈ A;

(iv) The map κµ : L∞(EA, µ) → B defined by

〈Ωω| κµ(f)πω(A)Ωω〉 =
∫

dµ(ω′)f(ω′)ω′(A) (9)

for f ∈ L∞(EA, µ) and A ∈ A is a *-isomorphism, satisfying the
following equality for A,B ∈ A:

κµ(Â)πω(B)Ωω = πω(B)Cπω(A)Ωω. (10)

Some vocabulary in the above need be explained: The space FA of factor
states on A is the set of all the factor states ϕ whose (GNS) representa-
tions πϕ have trivial centres: πϕ(A)′′ ∩ πϕ(A)′ = C1Hϕ . This FA divided
by the quasi-equivalence relation ≈ defined by the unitary equivalence up
to multiplicity, FA/ ≈ plays the role of sector-classifying space (or, sector
space, for short) whose elements we call “sectors” mathematically or “pure
phases” physically. Then Tomita’s theorem plays a crucial role in verifying
mathematically the so-called Born rule [22] postulated in quantum theory
in physics.

Via the definition Â(ρ) := ρ(A), ρ ∈ EA, any element A ∈ A can
be expressed by a continuous function Â : EA → C on the state space
EA. Among measures on EA, a measure µ is called barycentric for a state
ω ∈ EA if it satisfies ω =

∫
EA

ρdµ(ρ) ∈ EA and is said to be subcentral
if linear functionals

∫
∆ ρdµ(ρ) and

∫
EA\∆ σdµ(σ) on A are disjoint for any

Borel set ∆ ⊂ EA, having no non-vanishing intertwiners between them: i.e.,
T

∫
∆ πρ(A)dµ(ρ) =

∫
EA\∆ πσ(A)dµ(σ)T for ∀A ∈ A implies T = 0. If the

abelian subalgebra B in the above theorem is equal to the centre B = Zπω(A),
the measure µ is called the central measure of ω, determined uniquely by the
state ω and the corresponding barycentric decomposition ω =

∫
FA

ρdµ(ρ) is
called the central decomposition of ω. This last concept plays crucial roles
in establishing precisely the bi-directional relations between microscopic and
macroscopic aspects in quantum theory, as has been exhibited by the exam-
ples of “Micro-Macro duality” (see, for instance, [18, 19]).

At first sight, the distinction between central and subcentral may look
too subtle, but it plays important roles in different treatments, for instance,
between spatial and spacetime degrees of freedom in Wightman’s theorem
concerning the localizability, as mentioned already after the theorem. In
this connection, we consider the problem as to how classically visible con-
figurations of electromagnetic field can be specified in close relation with its
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microscopic quantum behaviour, for the purpose of which most convenient
concept seems to be the coherent state and the Segal-Bargmann transform
associated with it. Since coherent states are usually treated within the
framework of quantum mechancs for systems with the finite degrees of free-
dom, the aspect commonly discussed is the so-called overcompleteness re-
lations due to the non-orthogonality, 〈α|β〉 6= 0, between coherent states
â|α〉 = α|α〉 with different coherence parameters α 6= β.

We note that, in connection with Tomita’s theorem, a composite system
arises in such a form as A⊗ C(Σ) consisting of the object system A and of
the external system Σ(⊂ FA) to which measured data are to be registered
through measurement processes involving A. In this scheme, the universal
reference system Σ can be viewed naturally emergent from the object system
A itself just as the classifying space of its sector structure. Then, via the
logical extension [21] to parametrize the object system A by its sectors in Σ,
an abstract model of quantum fields ϕ : Σ → A can be created, constituting
a crossed product ϕ ∈ A o Û(Σ) (via the co-action of the structure group
U(Σ) of Σ). Thus, the above non-orthogonality can be resolved by the
effects of the classifying parameters of sectors Σ in FA. As a result, we
arrive at the quantum-probabilistic realization of coherent states in such a
form as the “exponential vectors” treated by Obata [16] in the context of
“Fock expansions” of white noises. What is important conceptually in this
framework is the analyticity due to the Segal-Bargmann transform and the
associated reproducing kernel (RS) to be identified through the projection
operator P in L2(Σ, dµ) onto its subspace HL2(Σ, dµ) of coherent states
expressed by holomorphic functions on Σ [9], where dµ denotes the Gaussian
measure.

As commented briefly above, we can find various useful relations and
connections of quantum theory in terms of the concept of “quantum fields”.
From this viewpoint, we elaborate on its roles in attaining a transparent
understanding of the mutual relations among fields, particles and mass in
the next section.

5 Quantum Field Ontology

5.1 From particles to fields

As we have discussed in Sec.4, the effective mass generating scenario applies
to general settings. Any kinds of boundary conditions with finite volume
(like cavity) will make photons heavier and slower, even without medium.
This fact itself leads to a paradoxical physical question — how can the
boundary condition affect a particle traveling in vacua? What is a spooky
action through vacua?

Our answer is quite simple: In fact a photon is not “a particle traveling
in vacua”. It is just a field filling the space time, before it “becomes” a
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particle, or more rigorously, before it appears in a particle-like event caused
via the interaction (energy-momentum exchange with external system). As
we will discuss in this section, it is quite unreasonable to imagine a photon
as a traveling particle unless any kinds of interaction is there.

Based on the arguments above, we discuss the limitation of particle con-
cept in connection with a new physical interpretation of Newton-Wigner-
Wightman analysis.

To begin with, we should mention that this concept involves a strong
inconsistency with particle concept which seems to have been forgotten at
some stage in history. In fact, the concept of a classical massless point par-
ticle with non-zero spin cannot survive special relativity with the worldline
of such a particle obscured by the spin: Instead of being a purely “internal”
degree of freedom, the spin causes kinematical extensivity of the particle
which is exhibited in a boost transformation, as is pointed out by Bacry in
[3].

The result of Newton-Wigner-Wightman analysis can be understood to
show that this inconsistency cannot be eliminated by generalizing the prob-
lem in the context of quantum theory: A massless particle cannot be lo-
calized unless the spin is zero. Even in the massive case, the concept of
localization is not independent of the choice of reference frames. There is
no well-defined concept of “spacetime localization” as we have mentioned.

These facts are consistent with the idea that the position is not a clear
cut a priori concept but an emergent property. Instead of a point parti-
cle, therefore, we should find something else having spacetime structure to
accommodate events in point-like forms, which is nothing but the quan-
tum field. In other words, the Newton-Wigner-Wightman analysis should
be re-interpreted as “the existence proof of a quantum field”, showing its
inevitability.

5.2 From fields to particles: Principle of eventualization

This does not mean that particle-like property is artificial nor fictional. On
the contrary, point-like events do take place in any kind of elementary pro-
cesses of quantum measurement such as exposure on a film, photon counting,
and so on.

This apparent contradiction is solved if we adopt the universality of
the indeterminate processes emerging point-like events (energy-momentum
exchanges) from quantum fields via formation of composite system with ex-
ternal systems (like media or systems giving boundary conditions), even the
latter coming from the part of the degrees of freedom of quantum fields. Let
us call these fundamental processes as eventualization. From our viewpoint,
the most radical implication of Newton-Wigner-Wightman analysis is that
we should abandon the ontology based on näıve particle picture and replace
it by the one based on quantum fields with their eventualizations.
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The idea of eventualization may appear to be just a palliative to avoid
the contradiction between abstract theory of localization and the concrete
localization phenomena, but actually, it opens the door to quite natural for-
mulation of quantum physics. In fact, the notion of measurement process
can be considered as a special kind of eventualization process with amplifica-
tion. As we will discuss in a forthcoming paper [23], a glossary of “quantum
paradoxes” is solved by just posing an axiom we call “eventualization prin-
ciple”.

Eventualization Principle: Quantum fields can effect macro-
scopic systems only through eventualization.

In other words, we hypothesize that the notion of “macroscopic systems”—
including a Schrödinger cat— can be characterized, or defined, by the col-
lection of events, formed by perpertual eventualization.
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Abstract

A response theory was developed to describe a small-scale many-electron system within the

neighborhood of a nanostructure radiating longitudinal and transverse electric fields, essentially

the full degrees of freedom of the scalar and vector potentials (SP and VP). The coexistence of

the SP and VP incidents distinguishes such a near-field optical system from the ordinary optical

system, and is the motivation for equal treatment of both potentials as the cause of the response in

the electron system. Furthermore, the low symmetry of the system makes the electric and magnetic

responses indistinguishable, so it is essential to use a single susceptibility, instead of the ordinary

two susceptibilities, i.e., the electric permittivity and the magnetic permeability. Therefore, the

present theory developed a single susceptibility relating the scalar and vector potentials (as the

cause) to the charge and current densities (as the result). The Heisenberg operators of both linear

and nonlinear single susceptibilities are systematically given in terms of functional derivatives of

the action integral with respect to the SP and VP, and proofs for charge conservation and gauge

invariance are given in a general manner; this theory is free from gauge-fixing. To make the ground

state bounded in the non-perturbed system, it is essential to consider the quantum many electron

effect (exchange-correlation effect), and this is done by employing the fundamental idea of density

functional theory, instead of the ordinary unequal treatment of the SP and VP, i.e., remaking the

SP into a Coulomb interaction between electron charges.

PACS numbers: 78.67.-n, 78.20.Bh, 41.20.-q, 42.25.Ja

Keywords: single susceptibility, non-resonant effect, optical near field, response function, electromagnetic

potential
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I. INTRODUCTION

Suppose that a small-scale many-electron system, a molecule for example, is exposed to

the longitudinal electric field and the transverse electromagnetic (EM) field radiated by a

neighboring nanostructure. Using the Coulomb gauge for a while, the scalar potential and

vector potential represent the longitudinal electric field and transverse EM field, respectively.

The coexistence of these two types of incident fields distinguishes such a near-field (NF)

optical system from the ordinary optical system; in the ordinary optical system, the electron

system of interest is located far from the light source and is exposed only to the transverse

EM field incident. As the first stage of investigation, it was assumed that the nanostructure

serves as a robust light source, which is insensible to the electron system of interest.

Here, the longitudinal electric field originates from the charge density on the nanostruc-

ture, obeys Coulomb’s law, has a non-radiative nature, and is localized around the nanos-

tructure, while the transverse EM field originates from the transverse current density on the

nanostructure, obeys Ampere-Maxwell’s law and Faraday’s law, has a radiative nature, and

may propagate far from the light source. Therefore, the longitudinal and transverse incident

fields are qualitatively different and should be treated separately and equally as the cause

of the response of the many-electron system in NF optics.

Up to now, there has been no such theoretical framework for equally treating the scalar

and vector potentials (the longitudinal electric field and transverse EM field). The reason

for this lies in the the many-body problem inevitably related to the NF optics via the

scalar potential (the longitudinal electric field). This fact has not been well recognized

in NF optics, although the problem of how to separate the cause of excitation from the

Coulomb interaction has remained for a long time[1]. In the usual Hamiltonian for a many-

electron system, the scalar potential in the Coulomb gauge (the longitudinal electric field)
nanostucture

PSfrag replacements
A

φ

moleculenanostructure

FIG. 1: A nanostructure yields a scalar potential, φ(r, t) and a vector potential, A(r, t) and these

potentials irradiate the neighboring many-electron system, e.g., a molecule.
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is rewritten as the interaction between the electron charge density operators, and only the

vector potential is considered as the cause of the response. This unequal treatment of the

scalar and vector potentials is needed to consider the quantum many-electron effect (the so-

called exchange-correlation effect) to construct the ground and excited states as the proper

bound states in a many-electron system. This is the usual procedure and is compatible

with ordinary optical systems, where the electron system of interest is far from the light

source, and the scalar potential incident is negligible. By contrast, in an NF optical system,

this approach results in a difficulty of understanding the response to the scalar potential

incident, because both the scalar potential incident (radiated by the nanostructure) and the

inherent scalar potential (originating from the particle charge) are built into the two-body

Coulomb interaction, and the two contributions are indistinguishable. To make matters

worse, the Coulomb interaction in itself is so difficult to treat that it is often ignored,

without considering it includes the effect of the scalar potential incident.

To best understand the fundamental physics in NFO, it is essential to develop an adequate

response theory. For this purpose, this paper defines and characterizes a single susceptibility

equally associated with the scalar and vector potentials based on the action integral from

scratch.

The single susceptibility introduced below relates the EM potential (as the cause) to the

induced charge and current densities (as the result) , while the two ordinary susceptibilities,

i.e., the electric permittivity and magnetic permeability, relate the total electric and magnetic

fields (as the cause) to the polarization and magnetization (as the result), respectively.

There are two motives for employing a single susceptibility: (1) The usual constitutive

equations with the two susceptibilities gives relationships between redundant degrees of

freedom. (2) In low-symmetry systems, such as in NF optical systems with nanostructures,

it is essential to use the single susceptibility instead of the two ordinary susceptibilities. A

detailed explanation of the two points is as follows.

(1) The inapplicability of the two susceptibilities may be explained from a naive view

point. The essential source of the EM field is the three components of charge density

and the transverse current density. The longitudinal current density is excluded because it

can be determined through the charge conservation law, once the charge density is known.

However, the redundant components of the polarization and magnetization are introduced

as the source of the EM field, so that the associated constitutive equations using the two

4



susceptibilities include the constraint condition for the redundancy, of which the physical

meaning is not declared. This situation is physically unreasonable and should be fixed by

the constitutive equation using a single susceptibility associated with the proper degrees of

freedom.

(2) The need for a single susceptibiity in low-symmetry optical systems as first claimed

by Cho[2, 3], who is one of the pioneers of non-local response theory from first principles

and who formulated a single susceptibility using the usual Hamiltonian for a many-electron

system. He derived a Taylor expansion for his single susceptibility, using the long wavelength

approximation (ka≪ 1, where 2π/k is the light wavelength and a is the representative size

of the material) and has shown the term of leading order, O(ka)0 , gives the electric per-

mittivity, and the term of order O(ka)2 gives the magnetic permeability. This separability

of the electric and magnetic responses holds only in systems with non-chiral symmetry. In

a system exhibiting chiral symmetry, however, this separability does not hold and there

exists a mixing of electric dipole (E1) transitions with magnetic dipole (M1) and/or elec-

tric quadrupole (E2) transitions in the term of order O(ka)1. Furthermore, the term of

order O(ka)1is incompatible with the so-called Drude-Born-Fedorov theory, which extends

the two susceptibilities, adding the cross terms of the electric-field-induced magnetization

and the magnetic-field-induced polarization. Consequently, in low-symmetry systems, the

two susceptibilities including the Drude-Born-Fedorov-extension are irrational, and a single

susceptibility is essential.

The above two points mean that the two ordinary susceptibilities are logically unrea-

sonable in NF optics, although these has been practically used, for example, in numerical

calculations using the Finite-Difference Time-Domain method. For NF optics, there are two

approaches for the single susceptibility (or the non-local response function).

Cho formulated a single susceptibility that relates the transverse vector potential (as the

cause) to the current density (as the result), and applied it to various optical systems[4].

Additionally, a modification that considers the scalar potential incident (longitudinal electric

field incident) in NF optical systems has been proposed[5]. Keller formulated another single

susceptibility within the non-local linear response theory, and it relates the transverse electric

field and the incident part of the longitudinal electric field (as the cause) to the current

density (as the result) [6].

In the above two formulations, the gauge is fixed, and the scalar potential (or the longitu-
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dinal electric field), except the incident contribution, is rewritten as the two-body Coulomb

interaction in the usual manner. Therefore, the response to the scalar potential, in prin-

ciple, can be rigorously considered via the Coulomb interaction if the many-body problem

is properly solved, whereas the response to the vector potential incident is treated in the

perturbative manner. In this approach, it is essential to solve the many-body problem, in

particular, for the nonlinear process related with the scalar potential (the longitudinal elec-

tric field). Even if the Coulomb interaction is properly considered, unequal treatment may

make it difficult to regulate the perturbation order of the responses and to understand the

role of the scalar potential incident.

The purpose of this paper is to define and characterize the single susceptibility of a many-

electron system, equally treating the scalar and vector potentials to explore the physics in

NF optics.

The contents of this paper are as follows: §II defines the linear and nonlinear single sus-

ceptibilities equally associated with the scalar and vector potentials, as functional derivatives

of the action integral. §III shows that the present susceptibility respects both charge con-

servation and gauge invariance, in a general manner. §IV derives the Heisenberg operators

of the linear and nonlinear single susceptibilities. §V shows that the present theoretical

scheme may be supported by density functional theory to prepare the non-perturbed state

as well as a complete set of many-electron states. §VI provides a summary of this work.

Two appendices are included: §A provides some details of a calculation in §II. §B gives an

explicit check for the charge conservation and gauge invariance of the linear and nonlinear

single susceptibilities.

II. DEFINITION OF NEW SINGLE SUSCEPTIBILITY

Based on the Lagrangian formulation of non-relativistic quantum electrodynamics, we

define the single susceptibility, which relates the scalar and vector potentials (the cause) to

the induced charge and current densities (the result). Furthermore, it is shown that this

susceptibility guarantees that charge conservation and gauge invariance hold; see the next

section. The action integral for non-relativistic quantum electrodynamics is:

I[ψ̂†

α
, ψ̂α, φ,A] ≡ Imat[ψ̂

†

α
, ψ̂α, φ,A] + IEM[φ,A], (1)
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Imat[ψ̂
†

α
, ψ̂α, φ,A] ≡ 1

c

∫

d4x
{

ψ̂†

α
(x)(i~∂t − qφ(x))ψ̂α(x)

− 1

2m

(

~

−i∂i − qAi(x)

)

ψ̂†

α
(x) ·

(

~

i
∂i − qAi(x)

)

ψ̂α(x)

−φ(x)ρ(EXT)(x) + Ai(x)j
(EXT)
i

(x)− ψ̂†

α
(x)v(AUX)(x)ψ̂α(x)

}

(2)

IEM[φ,A] ≡ 1

c

∫

d4x
{ǫ0
2
(∂tAi(x) + ∂iφ(x)) (∂tAi(x) + ∂iφ(x))

−ǫ0c
2

2
ǫijk∂jAk(x)ǫilm∂lAm(x)

}

, (3)

where m and q(= −e) are the electron mass and charge, c is the speed of light, φ,A are the

scalar and vector potentials, ψ̂†

α
, ψ̂α are the electron field operators with the spin state α (one

of the two spin states; so called ”up” and ”down” states), and ρ(EXT), j(EXT) are the nuclear

or other charge and the current densities, which yield the external electric and magnetic

fields, respectively. A static auxiliary potential v(AUX)(x) is null for now, but is introduced

here for later discussion of the density functional theory to consider effectively the quantum

many-electron effect (the exchange-correlation effect) ; see §V. ǫijk is an antisymmetric

tensor, and the Einstein rule is used for indices of vector and Grassmann fields, that is,

summation should be executed over repeated indices. At this first stage of investigation,

the interaction between spin polarization and the EM field is ignored. The soundness of the

above action integral is confirmed by its Euler equations, which will soon be derived.

The electron field operators are considered as quantized Grassmann fields. The Grass-

mann field satisfies [ψ̂α(r, t), ψ̂
†

β
(r′, t′)]+ = 0 [8], and corresponds to the ”classical” field of

the electron. These operators become the creation and annihilation operators of the electron

in quantum theory (the quantized Grassmann fields) if one introduces the anti-commutation

relation: [ψ̂α(r, t), ψ̂
†

β
(r′, t)]+ = δ3(r− r′)δαβ.

The action integral is composed of two parts: one is the action for the matter (including

the interaction between matter and the EM field) Imat[ψ̂
†

α
, ψ̂α, φ,A], and the other is the ac-

tion for the EM field IEM[φ,A]. Applying the extremal (optimizing) conditions with respect

to ψ̂α(x) , ψ̂
†

α
(x) leads to Heisenberg’s equation, and optimizing with respect to φ(x), A(x)

leads to Maxwell’s wave equations:

0 = c δψ̂†

α
(x)\δI = c δψ̂†

α
(x)\δImat

=

(

i~∂t − qφ(x)− 1

2m

(

~

i
∂i − qAi(x)

)

·
(

~

i
∂i − qAi(x)

)

− v(AUX)(x)

)

ψ̂α(x), (4)

0 = c δI/δψ̂α(x) = c δImat/δψ̂α(x)
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=

(

−i~∂t − qφ(x)− 1

2m

(

~

−i∂i − qAi(x)

)

·
(

~

−i∂i − qAi(x)

)

− v(AUX)(x)

)

ψ̂†

α
(x), (5)

0 = c
δI

δAi(x)
= ǫ0c

2

(

−ǫijk∂jǫklm∂lAm(x)−
1

c2
∂2
t
Ai(x)−

1

c2
∂t∂iφ(x) +

1

ǫ0c2
(ĵi(x) + j

(EXT )
i

(x))

)

,(6)

0 = c
δI

δφ(x)
= ǫ0

(

−∂i∂iφ(x)− ∂t∂iAi(x)−
1

ǫ0
(ρ̂(x) + ρ(EXT )(x))

)

. (7)

In Eqs.(4) and (5), the left- and right-hand functional derivatives with respect to the Grass-

mann field are executed, respectively[8]. In Eqs.(6) and (7), the following definitions are

introduced for the electron charge and current densities, respectively:

ρ̂(x) ≡ −c δ

δφ(x)
Imat = qψ̂†

α
(x)ψ̂α(x), (8)

ĵi(x) ≡ +c
δ

δAi(x)
Imat =

q

2m
ψ̂†

α
(x)

(

~

i
∂i − qAi(x)

)

ψ̂α(x) + h.c.. (9)

The charge-conservation law below holds, and is checked through explicit calculation:

∂tρ̂(x) + ∂iĵi(x) = 0. (10)

In the four-element representation, Eqs.(6) and (7) become:

(δµ
ν
�− ∂µ∂ν)A

ν(x) =
1

ǫ0c
(ĵµ(x) + jµ(EXT )(x)), (11)

where ĵµ = (cρ̂, ĵ), ĵµ = (cρ̂,−ĵ),

Aµ = (φ, cA), Aµ = (φ,−cA),

∂µ = (1/c ∂t,−∇), ∂µ = (1/c ∂t,∇),

� = ∂µ∂µ = 1/c2 ∂2
t
−∆ etc. (12)

Although Lorentz invariance is not maintained in the non-relativistic theory, we use the

four-element notation to simply represent charge conservation and gauge invariance. For

example, Eqs.(8)-(10) become:

ĵµ(x) = −c2 δ

δAµ(x)
Imat, (13)

∂µ ĵ
µ(x) = 0. (14)

The action integral, Eq.(1) is invariant under the following gauge transformation:

Aµ(x) → Aµ(x) + c ∂µη(x),

ψ̂α(x) → e
i

~
qη(x)ψ̂α(x), ψ̂†

α
(x) → ψ̂†

α
(x)e

−i

~
qη(x). (15)
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From the point of view of Noether’s theorem[7], the gauge invariance of the action integral

is the cause of the charge conservation law, Eq.(10) or Eq.(14).

Let us separate the EM field into two parts:

Aµ(x) = A(0)µ(x) + ∆Aµ(x), (16)

where A(0)µ is the static, initial EM potential satisfying Eqs.(6) and (7), and ∆Aµ(x) is

the perturbative EM potential. Under this variation of the EM field, let us re-optimize

the action for matter, Imat[ψ̂
†

α
, ψ̂α, A

µ]. That is, we re-optimize the electron field operator

satisfying Eqs.(4) and (5) under A(0)µ + ∆Aµ(x). In the above procedure, the variation of

the action for the matter is expressed by the total functional derivative of Aµ(x):

δ

δAµ(x)
Imat[ψ̂

†

α
[Aν ] , ψ̂α[A

ν ] , Aν ]

=
δ

δAµ(x)

∣

∣

∣

∣

explicit
Imat +

∫

d4x ′
δψ̂†

α
(x′)

δAµ(x)
δψ̂†

α
(x′)\δImat +

∫

d4x ′δImat/δψ̂α(x
′)
δψ̂α(x

′)

δAµ(x)

=
−1

c2
ĵµ(x; [A(0)ν ]). (17)

where the first term in the second expression is the variation explicitly caused by the pertur-

bative EM field, and the second and third terms are the implicit variations, created through

re-optimization of the field operator to satisfy Eqs.(6) and (7) under the perturbative EM

field. The last expression is derived using Eq.(13), Eqs.(4) and (5). The above equation

reveals that the first order total functional derivative of the action of matter is simply the

current density. Furthermore, the second order total functional derivative is calculated as

follows:

δ

δAµ1(x1)

δ

δAµ(x)
Imat[ψ̂

†

α
[Aν ] , ψ̂α[A

ν ] , Aν ]

=
δ

δAµ1(x1)

(

δ

δAµ(x)

∣

∣

∣

∣

explicit
Imat

)

+

∫

d4x ′
δ

δAµ1(x1)

(

δψ̂†

α
(x′)

δAµ(x)
δψ̂†

α
(x′)\δImat

)

+

∫

d4x ′
δ

δAµ1(x1)

(

δImat/δψ̂α(x
′)
δψ̂α(x

′)

δAµ(x)

)

=
−1

c2
δĵµ(x; [Aν ])

δAµ1(x1)

∣

∣

∣

∣

∣

Aν=A(0)ν

, (18)

where the second and third terms in the second expression are 0. Actually, the integrand of
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the second term is:
(

δ

δAµ1(x1)

δψ̂†

α
(x′)

δAµ(x)

)

δψ̂†

α
(x′)\δImat +

δψ̂†

α
(x′)

δAµ(x)

(

δ

δAµ1(x1)
δψ̂†

α
(x′)\δImat

)

,

The first term in this equation is 0 because of Eq.(4) under the initial EM potential, and the

second term is 0 because of the re-optimization of the field operators under the perturbative

EM potential. That is, Heisenberg’s equation holds for any EM potential. In the same

manner as for higher order total functional derivatives of the action of matter, the following

extension of Eq.(18) holds (see Appendix A for details):

δn+1Imat[ψ̂
†

α
[Aν ] , ψ̂α[A

ν ] , Aν]

δAµn(xn) · · · δAµ1(x1)δAµ(x)

∣

∣

∣

∣

∣

Aν=A(0)ν

=
−1

c2
δnĵµ(x; [Aν ])

δAµn(xn) · · · δAµ1(x1)

∣

∣

∣

∣

∣

Aν=A(0)ν

. (19)

To define the single susceptibility, suppose the system under the initial EM field A(0)µ(x)

is exposed to the perturbative EM field ∆Aµ(x). The initial EM field A(0)µ is a solution

of the coupled equations Eqs.(4) and (7), i.e., Heisenberg’s equation and Maxwell’s wave

equations, and is assumed to be a static solution existing in the ground state. On the

other hand, the total EM field A(0)µ +∆Aµ is not necessarily a solution of Maxwell’s wave

equations, Eqs.(6) and (7), that is, ∆Aµ is introduced as a virtual variation. The induced

current density is the variation from the current density under the initial EM field:

ĵµ(x; [A(0)ν +∆Aν ])− ĵµ(x; [A(0)ν ])

=

∫

d4x1
δĵµ(x; [Aν ]))

δAµ1(x1)

∣

∣

∣

∣

∣

Aν=A(0)ν

∆Aµ1(x1)

+
1

2!

∫

d4x1

∫

d4x2
δ2ĵµ(x; [Aν ])

δAµ1(x1)δAµ2(x2)

∣

∣

∣

∣

∣

Aν=A(0)ν

∆Aµ1(x1)∆A
µ2(x2)

+
1

3!

∫

d4x1

∫

d4x2

∫

d4x3
δ3ĵµ(x; [Aν ])

δAµ1(x1)δAµ2(x2)δAµ3(x3)

∣

∣

∣

∣

∣

Aν=A(0)ν

∆Aµ1(x1)∆A
µ2(x2)∆A

µ3(x3)

+ · · · . (20)

From Eq.(19), the linear and nonlinear single susceptibility operators are defined as:

χ̂µ
µ1
(x, x1) ≡ δĵµ(x; [Aν ])

δAµ1(x1)

∣

∣

∣

∣

∣

Aν=A(0)ν

= −c2 δ2Imat
δAµ(x)δAµ1(x1)

∣

∣

∣

∣

Aν=A(0)ν

, (21)

χ̂µ
µ1 µ2

(x, x1, x2) ≡ 1

2!

δ2ĵµ(x; [Aν ])

δAµ1(x1)δAµ2(x2)

∣

∣

∣

∣

∣

Aν=A(0)ν

,
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=
−c2
2!

δ3Imat
δAµ(x)δAµ1(x1)δAµ2(x2)

∣

∣

∣

∣

Aν=A(0)ν

(22)

χ̂µ
µ1 ···µn

(x, x1, · · · , xn) ≡ 1

n!

δnĵµ(x; [Aν ])

δAµ1(x1) · · · δAµn(xn)

∣

∣

∣

∣

∣

Aν=A(0)ν

=
−c2
n!

δn+1Imat
δAµ(x)δAµ1(x1) · · · δAµn(xn)

∣

∣

∣

∣

Aν=A(0)ν

, (23)

The susceptibility is defined using a small amount of the virtual variation, ∆Aµ. That is,

the EM field does not in general satisfy its Euler equation, Eq.(11), while the electron field

operators satisfy Eqs.(4) and (5). To evaluate the real EM field, ∆Aµ must be determined

and a further procedure is required to solve the coupled equations, with the constitutive

equations in terms of the susceptibility and Maxwell’s wave equations Eqs.(6) and (7). This

procedure is provided in a self-consistent manner, established by K.Cho[4].

III. CHARGE CONSERVATION LAW AND GAUGE INVARIANCE OF THE

SINGLE SUSCEPTIBILITY

In the last expressions in Eqs.(21)-(23) the coordinates x1, x2, · · · for the cause (the

perturbative EM field) and the coordinates x for the result (the induced current density)

are symmetric. Charge conservation for the induced charge density holds to each order of

the perturbation; this is described by the derivative of the coordinate for the result, x:

∂µχ̂
µ

µ1···
(x, x1, · · · ) = 0. (24)

This symmetry of the coordinates between the result and the cause leads to the following

equation concerning the derivative of the coordinate for the cause, e.g., x1 :

∂µ1 χ̂µ
µ1···

(x, x1, · · · ) = 0. (25)

Equation (25) means that the susceptibility guarantees that gauge invariance is respected.

That is, the resultant charge and current densities are independent of the chosen gauge. To

confirm this fact, consider the convolution integral with the single susceptibility and the

perturbative EM field, in a certain gauge, e.g.,

∫

d4x1 χ̂
µ

µ1···
(x, x1, · · · )∆Aµ1(x1). (26)
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A gauge transformation of ∆A to ∆A′ in another gauge is expressed as :

∆Aµ1(x1) = ∆A′µ1(x1) + c ∂µ1η(x1), (27)

where η is the gauge function. Equation (26) leads to:

∫

d4x1 χ̂
µ

µ1···
(x, x1, · · · )∆Aµ1(x1)

=

∫

d4x1 χ̂
µ

µ1···
(x, x1, · · · )∆A′µ1(x1)− c

∫

d4x1 ∂
µ1 χ̂µ

µ1···
(x, x1, · · · )η(x1)

=

∫

d4x1 χ̂
µ

µ1···
(x, x1, · · · )∆A′µ1(x1). (28)

The contribution of the gauge function vanishes in the convolution integral. Thus, the gauge

of the perturbative EM field may be freely selected. This means that the susceptibility is

independent of the chosen gauge and, in practice, one may select a gauge that is most

convenient for calculation.

IV. HEISENBERG OPERATOR OF THE SINGLE SUSCEPTIBILITY

In this section, the formula for Heisenberg operators of the linear and nonlinear sin-

gle susceptibilities is given using an expansion of the retarded product in Hamiltonian

formulation[9]. The Heisenberg operator of four-element current density, i.e., ĵµ(x) =

(cρ̂(x), ĵ(x)) is:

ĵµ(x) =











cqψ̂†

α
(x)ψ̂α(x) for µ = 0,

ψ̂†

α
(x)

q

2m

(

~

i
∂µ − q

c
Aµ(x)

)

ψ̂α(x) + h.c. for µ = 1, 2, 3 .
(29)

In Eq.(2), if the factor i~ψ̂†

α
(x) of the first term is regarded as the canonical momentum

of ψ̂α(x), then the Hamiltonian density may be determined as the Legendre transformation

from the Lagrangian density, that is:

Ĥ ≡
∫

d3x
1

2m

(

~

−i∂i − qAi(x)

)

ψ̂†

α
(x)

(

~

i
∂i − qAi(x)

)

ψ̂α(x) + qφ(x) ψ̂†

α
(x)ψ̂α(x).

(30)

This Hamiltonian governs the motion of electron field operators. Assuming that the initial

EM field φ(0),A(0) is the static EM field existing in the ground state of a many-electron
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system, the Hamiltonian, Ĥ may be separated into a non-perturbative part, Ĥ(0) and a

perturbative part, V̂ as follows:

Ĥ(0) ≡
∫

d3x
1

2m

(

~

−i∂i − qA
(0)
i
(x)

)

ψ̂†

α
(x) ·

(

~

i
∂i − qA

(0)
i
(x)

)

ψ̂α(x) + qφ(0)(x) ψ̂†

α
(x)ψ̂α(x)

+ v(AUX)(x) ψ̂†

α
(x)ψ̂α(x), (31)

V̂ (t) ≡ Ĥ − Ĥ(0) =

∫

d3x v̂(x),

=

∫

d3x
{

(

φ(x)− φ(0)(x)
)

qψ̂†

α
(x)ψ̂α(x)

−
(

Ai(x)− A
(0)
i
(x)
)

(

ψ̂†

α
(x)

q

2m

(

~

i
∂i − qA

(0)
i
(x)

)

ψ̂α(x) + h.c.

)

+
q

2m

(

Ai(x)−A
(0)
i
(x)
)(

Ai(x)− A
(0)
i
(x)
)

qψ̂†

α
(x)ψ̂α(x)

}

=

∫

d3x

{

1

c

(

Aµ(x)− A(0)µ(x)
)

ĵµ(x)
∣

∣

∣

A=A(0)

− q

2mc3
δ̃ µ

′

µ

(

Aµ(x)− A(0)µ(x)
)

(

Aµ′(x)− A
(0)
µ′
(x)
)

ĵ0(x)
}

, (32)

where δ̃ µ
′

µ
=







1 for µ = µ′ = 1, 2, 3 ,

0 otherwise .
(33)

The auxiliary potential, v(AUX)(x) effectively represents for the quantum many-electron effect

(the exchange-correlation effect), ; this fact will be explained in the next section. The tensor

Eq.(33) represents the non-relativistic effect. Actually, this tensor is the analogue of the

four-element Kronecker delta, but the time and spatial coordinates are inequivalent.

Here, the field operators in the interaction picture (the asymptotic field operators)

ψ̂
(in)†
α , ψ̂

(in)
α are governed by the non-perturbative Hamiltonian Ĥ(0) and coincide with the

field operators in the Heisenberg picture, ψ̂†

α
, ψ̂α at the infinite past time, t→ −∞, assuming

the adiabatic switch-on. The time-evolution operator Û(t,−∞) relates the operators in the

two pictures as follows:

ψ̂α(x) = Û−1(t,−∞)ψ̂(in)
α

(x)Û(t,−∞), (34)

ψ̂†

α
(x) = Û−1(t,−∞)ψ̂(in)†

α
(x)Û(t,−∞),

where Û(t,−∞) = lim
t0→−∞

Û(t, t0) = lim
t0→−∞

T̂ e
1
i~

∫
t

t0
dt′V̂ (in)(t′)

,

V̂ (in)(t′) ≡ V̂ ([ψ̂(in) †
α

, ψ̂(in)
α

]; t′)

Combining Eq.(34) and Eq.(29), the four-element current density operator in the interac-

tion picture may be defined as: ĵ(in)µ(x) = (cρ̂(in)(x), ĵ(in)(x)). These charge and current

13



densities do not satisfy the charge conservation law, except for A = A(0), and are merely

convenient tools used for obtaining the expansion of the retarded product of the Heisenberg

operator.

ĵµ(x) = Û−1(t,−∞)ĵ(in)µ(x)Û(t,−∞), (35)

ĵ(in)µ(x) =











c qψ̂
(in)†
α (x) ψ̂

(in)
α (x) for µ = 0,

ψ̂(in)†
α

(x)
q

2m

(

~

i
(−∂µ)− q

c
Aµ(x)

)

ψ̂(in)
α

(x) + h.c. for µ = 1, 2, 3 .
(36)

To obtain the perturbative expansion (the retarded product series) of the Heisenberg oper-

ator, let us introduce an operator in the intermediate picture, where Û(t, t0) will be used

instead of Û(t,−∞):

ρ̂•(x; t0) = Û−1(t, t0) q ψ̂
(in)†
α

(x) ψ̂(in)
α

(x)Û(t, t0),

ĵ•
i
(x; t0) = Û−1(t, t0)

q

2m
ψ̂(in)†
α

(x)

(

~

i
∂i − qAi(x)

)

ψ̂(in)
α

(x)Û(t, t0) + h.c..

The corresponding four-element current density is

ĵ•µ(x; t0) = (cρ̂•(x; t0), ĵ
•(x; t0))

As t0 → −∞, these operators coincide with those of the Heisenberg picture, while at t0 = t,

they coincide with those of the interaction picture:

ĵ•µ(x;−∞) = ĵµ(x), (37)

ĵ•µ(x; t) = ĵ(in)µ(x). (38)

Next, let’s investigate the time evolution of ĵ•µ as a function of t0.

∂t0 ĵ
•µ(x; t0) = {∂t0Û−1(t, t0)}ĵ(in)µ(x)Û(t, t0) + Û−1(t, t0)ĵ

(in)µ(x){∂t0Û(t, t0)}

=
1

i~
V̂ (in)(t0)Û

−1(t, t0)ĵ
(in)µ(x)Û(t, t0) + Û−1(t, t0)ĵ

(in)µ(x)Û(t, t0)
−1

i~
V̂ (in)(t0)

=
−1

i~

[

ĵ•µ(x; t0), V̂
(in)(t0)

]

Integrating over [t0, t], approximating iteratively using Eq.(38), and changing the region of
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multi-integration, we obtain:

ĵ•µ(x; t0) = ĵ(in)µ(x) +
1

i~

∫

t

t0

dt1

[

ĵ•µ(x; t1), V̂
(in)(t1)

]

= ĵ(in)µ(x) +
1

i~

∫

t

t0

dt1

[

ĵ(in)µ(x), V̂ (in)(t1)
]

+

(

1

i~

)2 ∫ t

t0

dt1

∫

t

t1

dt2

[[

ĵ(in)µ(x), V̂ (in)(t2)
]

, V̂ (in)(t1)
]

+

(

1

i~

)3 ∫ t

t0

dt1

∫

t

t1

dt2

∫

t

t2

dt3

[[[

ĵ(in)µ(x), V̂ (in)(t3)
]

, V̂ (in)(t2)
]

, V̂ (in)(t1)
]

+ · · ·

= ĵ(in)µ(x) +
1

i~

∫

t

t0

dt1

[

ĵ(in)µ(x), V̂ (in)(t1)
]

+

(

1

i~

)2 ∫ t

t0

dt1

∫

t1

t0

dt2

[[

ĵ(in)µ(x), V̂ (in)(t1)
]

, V̂ (in)(t2)
]

+

(

1

i~

)3 ∫ t

t0

dt1

∫

t1

t0

dt2

∫

t2

t0

dt3

[[[

ĵ(in)µ(x), V̂ (in)(t1)
]

, V̂ (in)(t2)
]

, V̂ (in)(t3)
]

+ · · ·

Then, taking the limit t0 → −∞, the above equation yields the retarded product of the

Heisenberg operator, as follows:

ĵµ(x) = ĵ(in)µ(x) +
1

i~c

∫

ct1∈(−∞,ct]

d4x 1

[

ĵ(in)µ(x), v̂(in)(x1)
]

+

(

1

i~c

)2 ∫

ct1∈(−∞,ct]

d4x 1

∫

ct2∈(−∞,ct1]

d4x 2

[[

ĵ(in)µ(x), v̂(in)(x1)
]

, v̂(in)(x2)
]

+

(

1

i~c

)3 ∫

ct1∈(−∞,ct]

d4x 1

∫

ct2∈(−∞,ct1]

d4x 2

∫

ct3∈(−∞,ct2]

d4x 3

[[[

ĵ(in)µ(x), v̂(in)(x1)
]

, v̂(in)(x2)
]

, v̂(in)(x3)
]

+ · · · (39)

where V̂ (in)(t) =

∫

d3x v̂(in)(x).

The quantity V̂ (in), v̂(in) in the above formula is Eq.(32), with ψ̂α, ψ̂
†

α
being replaced by

ψ̂
(in)
α , ψ̂

(in) †
α . Next, let us derive the Heisenberg operator of susceptibility, by means of the

functional derivative of Eq.(39) by the EM potential. In Equation (39), the dependence of

the EM potential through ĵ(in)µ(x) in Eq.(36) is of zeroth and first order(µ ∈ {1, 2, 3}), and
dependence through v̂(in)(x1) is of first and second order. The linear single susceptibility

operator comes from the A1-dependence, which exists in the first and second terms of Eq.(39)

:

χ̂µ
µ1
(x, x1) =

δĵµ(x)

δAµ1(x1)

∣

∣

∣

∣

∣

A=A(0)
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=
−q
mc2

δ̃µ
µ1
δ4(x− x1) ĵ

(in0) 0(x) +
1

i~c2
θ(ct− ct1)

[

ĵ(in0)µ(x), ĵ(in0)
µ1
(x1)

]

, (40)

where ĵ(in0)µ(x) = ĵ(in)µ(x)
∣

∣

∣

A=A(0)
.

The Heisenberg operators of the nonlinear single susceptibilities, to second and higher

order, are as follows. To avoid any confusion in the case of two times coinciding, the long

and explicit expressions are given, without making use of the time ordering operator.

2! χ̂µ
µ1µ2

(x, x1, x2) =
δ2ĵµ(x)

δAµ1(x1)δAµ2(x2)

∣

∣

∣

∣

∣

A=A(0)

=
1

i~c2
−q
mc2

{

δ(ct− ct1)θ(ct− ct2) δ̃µ
µ1
δ3(x− x1)

[

ĵ(in0) 0(x), ĵ(in0)
µ2
(x2)

]

(41)

+δ(ct− ct2)θ(ct− ct1) δ̃µ
µ2
δ3(x− x2)

[

ĵ(in0) 0(x), ĵ(in0)
µ1
(x1)

]

+ θ(ct− ct1)δ(ct1 − ct2)δ̃µ1 µ2δ
3(x1 − x2)

[

ĵ(in0)µ(x), ĵ
(in0)

0 (x1)
]}

+

(

1

i~c2

)2
{

θ(ct− ct1)θ(ct1 − ct2)
[[

ĵ(in0)µ(x), ĵ(in0)
µ1
(x1)

]

, ĵ(in0)
µ2
(x2)

]

+ θ(ct− ct2)θ(ct2 − ct1)
[[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ1
(x1)

]}

.

3! χ̂µ
µ1µ2µ3

(x, x1, x2, x3) =
δ3ĵµ(x)

δAµ1(x1)δAµ2(x2)δAµ3(x3)

∣

∣

∣

∣

∣

A=A(0)

=
1

i~c2

(

−q
mc2

)2

(42)

{

θ(ct− ct2)δ(ct− ct1)δ(ct2 − ct3)δ̃
µ

µ1
δ3(x− x1)δ̃µ2 µ3δ

3(x2 − x3)
[

ĵ(in0) 0(x), ĵ
(in0)

0(x2)
]

+θ(ct− ct3)δ(ct− ct2)δ(ct3 − ct1)δ̃
µ

µ2
δ3(x− x2)δ̃µ3 µ1δ

3(x3 − x1)
[

ĵ(in0) 0(x), ĵ
(in0)

0(x3)
]

+ θ(ct− ct1)δ(ct− ct3)δ(ct1 − ct2)δ̃
µ

µ3
δ3(x− x3)δ̃µ1 µ2δ

3(x1 − x2)
[

ĵ(in0) 0(x), ĵ
(in0)

0(x1)
]}

+

(

1

i~c2

)2 −q
mc2

{

δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)δ̃
µ

µ1
δ3(x− x1)

[[

ĵ(in0) 0(x), ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ3
(x3)

]

+δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)δ̃
µ

µ1
δ3(x− x1)

[[

ĵ(in0) 0(x), ĵ(in0)
µ3
(x3)

]

, ĵ(in0)
µ2
(x2)

]

+δ(ct− ct2)θ(ct2 − ct3)θ(ct3 − ct1)δ̃
µ

µ2
δ3(x− x2)

[[

ĵ(in0) 0(x), ĵ(in0)
µ3
(x3)

]

, ĵ(in0)
µ1
(x1)

]

+δ(ct− ct2)θ(ct2 − ct1)θ(ct1 − ct3)δ̃
µ

µ2
δ3(x− x2)

[[

ĵ(in0) 0(x), ĵ(in0)
µ1
(x1)

]

, ĵ(in0)
µ3
(x3)

]

+δ(ct− ct3)θ(ct3 − ct1)θ(ct1 − ct2)δ̃
µ

µ3
δ3(x− x3)

[[

ĵ(in0) 0(x), ĵ(in0)
µ1
(x1)

]

, ĵ(in0)
µ2
(x2)

]

+δ(ct− ct3)θ(ct3 − ct2)θ(ct2 − ct1)δ̃
µ

µ3
δ3(x− x3)

[[

ĵ(in0) 0(x), ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ1
(x1)

]
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+θ(ct− ct1)δ(ct1 − ct2)θ(ct2 − ct3)δ̃µ1 µ2δ
3(x1 − x2)

[[

ĵ(in0)µ(x), ĵ
(in0)

0 (x1)
]

, ĵ(in0)
µ3
(x3)

]

+θ(ct− ct2)δ(ct2 − ct3)θ(ct3 − ct1)δ̃µ2 µ3δ
3(x2 − x3)

[[

ĵ(in0)µ(x), ĵ
(in0)

0 (x2)
]

, ĵ(in0)
µ1
(x1)

]

+θ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2)δ̃µ3 µ1δ
3(x3 − x1)

[[

ĵ(in0)µ(x), ĵ
(in0)

0 (x3)
]

, ĵ(in0)
µ2
(x2)

]

+θ(ct− ct1)θ(ct1 − ct2)δ(ct2 − ct3)δ̃µ2 µ3δ
3(x2 − x3)

[[

ĵ(in0)µ(x), ĵ(in0)
µ1
(x1)

]

, ĵ
(in0)

0 (x2)
]

+θ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)δ̃µ3 µ1δ
3(x3 − x1)

[[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]

, ĵ
(in0)

0 (x3)
]

+θ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2)δ̃µ1 µ2δ
3(x1 − x2)

[[

ĵ(in0)µ(x), ĵ(in0)
µ3
(x3)

]

, ĵ
(in0)

0 (x1)
]}

+

(

1

i~c2

)3

{

θ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)
[[[

ĵ(in0)µ(x), ĵ(in0)
µ1
(x1)

]

, ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ3
(x3)

]

+θ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)
[[[

ĵ(in0)µ(x), ĵ(in0)
µ1
(x1)

]

, ĵ(in0)
µ3
(x3)

]

, ĵ(in0)
µ2
(x2)

]

+θ(ct− ct2)θ(ct2 − ct3)θ(ct3 − ct1)
[[[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ3
(x3)

]

, ĵ(in0)
µ1
(x1)

]

+θ(ct− ct2)θ(ct2 − ct1)θ(ct1 − ct3)
[[[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ1
(x1)

]

, ĵ(in0)
µ3
(x3)

]

+θ(ct− ct3)θ(ct3 − ct1)θ(ct1 − ct2)
[[[

ĵ(in0)µ(x), ĵ(in0)
µ3
(x3)

]

, ĵ(in0)
µ1
(x1)

]

, ĵ(in0)
µ2
(x2)

]

+θ(ct− ct3)θ(ct3 − ct2)θ(ct2 − ct1)
[[[

ĵ(in0)µ(x), ĵ(in0)
µ3
(x3)

]

, ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ1
(x1)

]}

.

The charge conservation,Eq.(24), and gauge invariance are respected in Equations (40)-(42).

This fact is successfully checked in §B.

V. A REPRESENTATION OF THE SINGLE SUSCEPTIBILITY USING EIGEN-

STATES BASED ON DENSITY FUNCTIONAL THEORY

The linear and nonlinear single susceptibilities are the expectation values of the corre-

sponding operators, Eqs.(40)-(42), using the ground state in the non-perturbed electron

system, which is specified by the simplified conditions in this paper:

A(x) = A(0)(x) = 0, j(EXT)(x) = 0, φ(x) = φ(0)(x) and ρ(EXT)(x) are static. (43)

Let us explain how density functional theory[10, 11] may allow us to prepare such the ground

state and the complete set of the states in the electron system. For that purpose, we need the

electron field operators together with the scalar and vector potentials satisfying the coupled

equations, Eqs.(4)-(9). However, in the semiclassical treatment of the present theory, Eqs.(8)
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and (9) are replaced with their expectation values using the ground state(, which we seek

now on). Due to this procedure, the quantum many-electron effect, the so-called exchange

correlation effect is ignored. Therefore, the solution of Eqs.(4)-(9) as it is may not reproduce

the electron charge density of the proper ground state, ρGS(r), which is obtained using the

ordinary Hamiltonian including the two-body Coulomb interaction, eliminating the scalar

potential under the Coulomb gauge. Such the electron density ρGS(r), in turn, brings about

the proper scalar potential φ(0)(x) under the Coulomb gauge. Suppose that the proper

electron charge density ρGS(r) is already known under the ordinary Hamiltonian.

Now, we like to seek for the ground state |0〉 in need, adjusting the auxiliary potential

v(AUX)(r) to make the electron charge density fit the proper one:

〈0|ρ̂(x)|0〉 = ρGS(r). (44)

Such a situation in Eq.(44) is assumed by Kohn and Sham in the density functional

theory[11]. That is, Eqs.(4) and (5) are equivalent to Eq.(2.8) in Ref.[11] [the Kohn-Sham

equation (KS equation) ], if v(AUX)(r) is regarded as the so-called exchange-correlation po-

tential.

For details, one may prepare the spin-orbit function ϕkα(r, σ) (k, α stands for the orbit

and spin states, σ is the spin coordinate) as the eigenstate of the KS equation with the

eigenenergy ~ωk. Under the conditions,Eq.(43), the KS equation is,

0 =

(

~ωk − qφ(0)(r)− 1

2m

~

i
∂i ·

~

i
∂i − v(AUX)(r)

)

ϕkα(r, σ), (45)

where v(AUX)(r) is set to the exchange-correlation potential. Then, ψ̂α(x) =
∑

k
ϕkα(r, σ)âkα

satisfies Eq.(4) under the condition Eq.(43), where âkα is the operator to annihilate the

electron belonging to the spin-orbit ϕkα(r, σ). Then, the ground state with the electron

number n in the present theory is constructed as the single Slater determinant,

|0〉 = 1√
n!

∏

kα

â†
kα
|vac〉 , (46)

where |vac〉 is the vacuum state, and the indecies kα scan over the n spin-orbits from the

lowest eigenenergies. Furthermore, under the fixed v(AUX)(r) and φ(0)(r), one may consider

all the possible combination of n spin-orbits and obtain the normalized orthogonal complete

set {|m〉|m = 0, 1, 2, · · · } in terms of single Slater determinants.
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On the above logic, one should know the proper electron charge density ρGS(r) beforehand

to determine v(AUX)(r), which is the universal functional of the electron density[10, 11]. In

practice, however, one may solve the KS equation, possibly under the local density approx-

imation for v(AUX)(r), and reconsider the resulting charge density as ρGS(r).

The expectation value of the single susceptibility operator is, 〈0|χ̂µ
µ1···

(x, x1, · · · )|0〉, and,
for example, the linear susceptibility becomes:

〈0|χ̂µ
µ1
(x, x1)|0〉 =

−q
mc2

δ̃µ
µ1
δ4(x− x1) 〈0|ĵ(in0) 0(x)|0〉

+
1

i~c2
θ(ct− ct1)〈0|

[

ĵ(in0)µ(x), ĵ(in0)
µ1
(x1)

]

|0〉 . (47)

Next, to evaluate the products of two (or more) current density operators, e.g., the second

term in Eq.(47), we may use the projection operator 1̂ =
∑

m
|m〉〈m|. Now, the expectation

value in the second term of Eq.(47) becomes,

〈0|
[

ĵ(in0)µ(x), ĵ(in0)
µ1
(x1)

]

|0〉

=
∑

m

{

〈0|ĵ(in0)µ(x)|m〉〈m|ĵ(in0)
µ1
(x1)|0〉 − 〈0|ĵ(in0)

µ1
(x1)|m〉〈m|ĵ(in0)µ(x)|0〉

}

=
∑

m

lim
t0→∞

{

〈0|e−1
i~
Ĥ(0)(t−t0)ĵ(in0)µ(x)|t=t0e

1
i~
Ĥ(0)(t−t0)|m〉〈m|e−1

i~
Ĥ(0)(t1−t0)ĵ(in0)

µ1
(x1)|t1=t0e

1
i~
Ĥ(0)(t1−t0)|0〉

− 〈0|e−1
i~
Ĥ(0)(t1−t0)ĵ(in0)

µ1
(x1)|t1=t0e

1
i~
Ĥ(0)(t1−t0)|m〉〈m|e−1

i~
Ĥ(0)(t−t0)ĵ(in0)µ(x)|t=t0e

1
i~
Ĥ(0)(t−t0)|0〉

}

=
∑

m

{

e
1
i~
(Em−E0)(t−t1)〈0|ĵ(in0)µ(x)|t=−∞|m〉〈m|ĵ(in0)

µ1
(x1)|t1=−∞|0〉

− e
−1
i~

(Em−E0)(t−t1)〈0|ĵ(in0)
µ1
(x1)|t1=−∞|m〉〈m|ĵ(in0)µ(x)|t=−∞|0〉

}

. (48)

If the convolution integral with the perturbative EM field is performed, the energy denomi-

nator will appear.

In the above theoretical framework, |m〉’s are simply members of the complete set, and do

not carry any physical meaning of excited states of the many-electron system. Considering

that the density functional theory concerns only the ground state of the many-electron

system, the above treatment is a sound application of density functional theory to the

response theory adequate for near-field optics.

As a summary, the quantum many-electron effect is temporally ignored in the present

semiclassical theory, but is compensated with the support of the density functional theory.

In other words, the scalar potential inherently existing in the electron system is separated

19



as φ(0)(x) and v(AUX)(r), and the scalar potential incident may be treated equally with the

vector potential incident. Note that, φ(0)(x) is under the Coulomb gauge but the scalar and

vector potential incidents may be gauge-free, that is, the present response theory is still free

from gauge-fixing.

For further refinements in the future, the prerequisites for the density functional theory

is worth noting:

• The electron density can be considered as the elementary variable of the universal

functional determining the ground state energy in the many-electron system[10], if

the electron density belongs to the domain, where the density is represented by a

wavefunction of n electron state. How to specify such the domain is known as the

representability problem[12].

• In principle, the exchange-correlation potential, e.g., that under the local density ap-

proximation, can be defined in the system with the slowly-varying electron charge

density[11].

VI. SUMMARY

1. Aiming to investigate electron response in NFO, we define the linear and nonlinear

single susceptibilities, equally considering the scalar and vector potentials as the cause

of the response.

2. It is shown that the present single linear and nonlinear susceptibilities satisfy charge

conservation and gauge invariance.

3. The linear and nonlinear susceptibilities in the form of Heisenberg operators are derived

by means of the functional derivatives of the action integral of the matter with respect

to the scalar and vector potential.

4. It is shown, in principle, that the density functional theory may be used in the non-

perturbed system and support to prepare the ground state and a complete set of states,

which in turn are used to evaluate the expectation values of the operators of the linear

and nonlinear susceptibilities.

Some remaining problems meriting further investigation include:

20



1. Applying the present linear response theory to a NF optical sysem to show a difference

in response to the longitudinal electric field (the scalar potential) and to the transverse

electric field (the vector potential).

2. Developing a practical simulator for the many-electron system in NFO, using the

present response theory with the support of the density functional theory.

3. Extending the response theory to treat the spin-polarization system in NFO, based on

the Pauli or Dirac equation.

4. Developing a phenomenological theory of the single susceptibility, which can aid exper-

imentalists in NFO, providing a substitute for the electric permittivity and magnetic

permeability of ordinary optics.
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Appendix A: Optimization of Electron Field Operators Under Arbitrary EM Po-

tential

Under a given EM potential, Aν , the electron field operator optimized to satisfy Eq.(4)

is considered as the functional of Aν , i.e., ψ̂α(x; [A
ν ]), ψ̂†

α
(x; [Aν ]). Then, the next equation

holds for n = 0, 1, 2, · · · :

δn

δAµn(xn) · · · δAµ1(x1)

∣

∣

∣

∣

Aν=A(0)ν

δψ̂†

α
(x′)\δImat = 0, (A1)

δn

δAµn(xn) · · · δAµ1(x1)

∣

∣

∣

∣

Aν=A(0)ν

δImat/δψ̂α(x
′) = 0. (A2)

Proof: Equation (4) should be hold both under A(0)ν(non-perturbative EM potential) and

under A(0)ν +∆Aν , therefore,

δψ̂†

α
(x′)\δImat

∣

∣

∣

(ψ̂α,ψ̂
†
α,A

ν)=(ψ̂α[A(0)ν+∆Aν ],ψ̂†
α[A(0)ν+∆Aν ],A(0)ν+∆Aν)

= 0,
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Taylor expansion leads to:

∞
∑

n=0

1

n!

∫

d4x n · · ·
∫

d4x 1

δn
(

δψ̂†

α
(x′)\δImat

)

δAµn(xn) · · · δAµ1(x1)

∣

∣

∣

∣

∣

∣

(ψ̂α,ψ̂
†
α,A

ν)=(ψ̂α[A(0)ν ],ψ̂†
α[A(0)ν ],A(0)ν)

∆Aµ1(x1) · · ·∆Aµn(xn) = 0,

Considering this equation as the identity with respect to ∆Aµ(x) results in Eq.(A1). Equa-

tion (A2) is proved in the same manner.

Appendix B: Charge Conservation Law and Gauge Invariance of Linear and Non-

linear Four-Element Single Susceptibility

To show that four-element linear single susceptibility guarantees the charge conservation

law Eq.(24), suppose the four-element divergence of Eq.(40), considering ∂µĵ
(in0)µ(x) = 0,

∂µχ̂
µ

µ1
(x, x1) =

−q
mc2

δ(ct− ct1)δ̃
µ

µ1
∂µ

(

δ3(x− x1) ĵ
(in0) 0(x)

)

(B1)

+
1

i~c2
δ(ct− ct1)

[

ĵ(in0) 0(x), ĵ(in0)
µ1
(x1)

]

= 0.

In the second term of the second hand, we use the following commutation relationship at

the same time :

δ(ct− ct1)
[

ĵ(in0) 0(x), ĵ(in0)
µ1
(x1)

]

= −ihc2 −q
mc2

δ(ct− ct1)δ̃
µ

µ1
∂µ

(

δ3(x− x1)ĵ
(in0) 0(x)

)

(B2)

= −ihc2 −q
mc2

δ(ct− ct1)δ̃
µ

µ1

(

∂µδ
3(x− x1)

)

ĵ(in0) 0(x1)

The proof of Eq.(B2) is as follows: If µ1 = 0 in the left hand side of Equation (B2), it is the

commutator between charge density operator at the same time, and is zero.

[

ĵ(in0) 0(x), ĵ
(in0)

0 (x1)
]

t1=t
= c2q2

[

ψ̂†

α
(x)ψ̂α(x) , ψ̂

†

α
(x1)ψ̂α(x1)

]

t1=t
= 0. (B3)

One may check Eq.(B3) by a straightforward calculation using the anti-commutation relation

of electron field operators at the same time,

[

ψ̂α(x) , ψ̂
†

α
(x1)

]

+, t1=t
= δ3(x− x1).

Next, if µ1 = i ∈ {1, 2, 3} in the left hand side of Equation (B2), the commutator in
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three-element representation becomes as follows:

[

ĵ(in0) 0(x), ĵ
(in0)
µ1=i

(x1)
]

t1=t

= −cq q

2m

[

ψ̂†

α
(x)ψ̂α(x) , ψ̂

†

α
(x1)

(

~

i
∂1
i
− qA

(0)
i
(x1)

)

ψ̂α(x1)

+

((

~

−i∂
1
i
− qA

(0)
i
(x1)

)

ψ̂†

α
(x1)

)

ψ̂α(x1)

]

t1=t

(B4)

As the term includes qA
(0)
i
(x1) is zero following Eq.(B3), let us treat the term including the

derivative.

[

ĵ(in0) 0(x), ĵ
(in0)
µ1=i

(x1)
]

t1=t

= −cq
2
i~c2

−q
mc2

lim
x•1→x1

∂1 •
i

[

ψ̂†

α
(x)ψ̂α(x) , ψ̂

†

α
(x1)ψ̂α(x

•

1)− ψ̂†

α
(x•1)ψ̂α(x1)

]

t1=t

= −cq
2
i~c2

−q
mc2

lim
x•1→x1

∂1 •
i

(

δ3(x− x1)
(

ψ̂†

α
(x)ψ̂α(x

•

1) + ψ̂†

α
(x•1)ψ̂α(x)

)

−δ3(x− x•1)
(

ψ̂†

α
(x)ψ̂α(x1) + ψ̂†

α
(x1)ψ̂α(x)

))

t1=t

= −cq
2
i~c2

−q
mc2

δ3(x− x1)∂i

(

ψ̂†

α
(x)ψ̂α(x1) + ψ̂†

α
(x1)ψ̂α(x)

)

+
(

∂iδ
3(x− x1)

)

(

ψ̂†

α
(x)ψ̂α(x1) + ψ̂†

α
(x1)ψ̂α(x)

)

t1=t

= −cq
2
i~c2

−q
mc2

∂i

(

δ3(x− x1)
(

ψ̂†

α
(x)ψ̂α(x1) + ψ̂†

α
(x1)ψ̂α(x)

))

t1=t

= −cqi~c2 −q
mc2

∂i

(

δ3(x− x1)ψ̂
†

α
(x)ψ̂α(x)

)

= −i~c2 −q
mc2

δ̃ µ
µ1
∂µ

(

δ3(x− x1)ĵ
(in0) 0(x)

)

(B5)

= −cqi~c2 −q
mc2

∂i

(

δ3(x− x1)ψ̂
†

α
(x1)ψ̂α(x1)

)

t1=t
= −i~c2 −q

mc2
δ̃ µ
µ1

(

∂µδ
3(x− x1)

)

ĵ(in0) 0(x1)t1=t ,

(B6)

where the last two-way expressions Eqs.(B5) and (B6) are in four-element representation

instead of three-element representation. Summarizing Eqs.(B3) and (B6) result in Eq.(B2).

As the result, the present four-element linear susceptibility,Eq.(40) maintains the charge

conservation law ,Eq.(24).

For the proof for the gauge invariance, Eq.(25), of the linear susceptibility, suppose the

four-element divergence with respect to x1. Then, using Eq.(B2) with the replacement,
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x↔ x1 and the relation, δ̃µ1
µ
∂µ1 = −δ̃µ

µ1
∂µ1 , one may obtain:

∂µ1 χ̂µ
µ1
(x, x1) =

−q
mc2

δ(ct− ct1)
(

δ̃µ
µ1
∂µ1δ3(x− x1)

)

ĵ(in0) 0(x) (B7)

− 1

i~c2
δ(ct− ct1)

[

ĵ(in0)µ(x), ĵ
(in0)

0 (x1)
]

= 0.

As shown above, the linear susceptibility Eq.(40) maintains gauge invariance Eq.(25).

Next, let us show that the charge conservation law is satisfied by the 2nd order nonlinear

single susceptibility, Eq.(41). Operating ∂µ = δ0
µ
∂0 + δ1

µ
∂1 + δ2

µ
∂2 + δ3

µ
∂3 to Eq.(41) and

considering ∂µĵ
(in0)µ(x) = 0 (the charge conservation law for the current density operator in

the non-interacting system), the surviving terms are those the operator ∂µ operates on the

step function or delta function in front of the commutator, and operates on ĵ(in0) 0(x) in the

commutator.

∂µ 2! χ̂
µ

µ1µ2
(x, x1, x2) =

1

i~c2
−q
mc2

{

δ(ct− ct1)θ(ct− ct2) δ̃µ
µ1
∂µ

(

δ3(x− x1)
[

ĵ(in0) 0(x), ĵ(in0)
µ2
(x2)

])

(B8a)

+δ(ct− ct2)θ(ct− ct1) δ̃µ
µ2
∂µ

(

δ3(x− x2)
[

ĵ(in0) 0(x), ĵ(in0)
µ1
(x1)

])

(B8b)

+ δ(ct− ct1)δ(ct1 − ct2)δ̃µ1 µ2 δ3(x1 − x2)
[

ĵ(in0) 0(x), ĵ
(in0)

0 (x1)
]}

(B8c)

+

(

1

i~c2

)2
{

δ(ct− ct1)θ(ct1 − ct2)
[[

ĵ(in0) 0(x), ĵ(in0)
µ1
(x1)

]

, ĵ(in0)
µ2
(x2)

]

(B8d)

+ δ(ct− ct2)θ(ct2 − ct1)
[[

ĵ(in0) 0(x), ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ1
(x1)

]}

. (B8e)

Applying Eq.(B2), the third term (B8c) vanishes, and the fourth and fifth terms (B8d) and

(B8e) cancel the first and second terms (B8a) and (B8b), respectively.

As a result, the second order nonlinear single susceptibility operator Eq.(41) maintains

the charge conservation law, Eq.(24).

To check the gauge invariance of the second order nonlinear single susceptibility operator,

let us operate ∂µ1 to Eq.(41).

∂µ1 2! χ̂µ
µ1µ2

(x, x1, x2) =

1

i~c2
−q
mc2

{

δ(ct− ct1)θ(ct− ct2)
(

δ̃µ
µ1
∂µ1δ3(x− x1)

) [

ĵ(in0) 0(x), ĵ(in0)
µ2
(x2)

]

(B9a)

−δ(ct− ct2)δ(ct− ct1) δ̃µ
µ2

δ3(x− x2)
[

ĵ(in0) 0(x), ĵ
(in0)

0 (x1)
]

(B9b)

+ θ(ct− ct1)δ(ct1 − ct2)δ̃µ1 µ2∂
µ1

(

δ3(x1 − x2)
[

ĵ(in0)µ(x), ĵ
(in0)

0 (x1)
])}

(B9c)
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+

(

1

i~c2

)2

{(−δ(ct− ct1)θ(ct1 − ct2) + θ(ct− ct1)δ(ct1 − ct2))

[[

ĵ(in0)µ(x), ĵ
(in0)

0 (x1)
]

, ĵ(in0)
µ2
(x2)

]

(B9d)

− θ(ct− ct2)δ(ct2 − ct1)
[[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]

, ĵ
(in0)

0 (x1)
]}

. (B9e)

Replacing the fifth term (B9e) using the next Jacobi identity:

[[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]

, ĵ
(in0)

0 (x1)
]

(B10)

= −
[[

ĵ(in0)
µ2
(x2), ĵ

(in0)
0 (x1)

]

, ĵ(in0)µ(x)
]

−
[[

ĵ
(in0)

0 (x1), ĵ
(in0)µ(x)

]

, ĵ(in0)
µ2
(x2)

]

,

then, the first term in the right hand side of Eq.(B10) with Eq.(B2) offsets the term (B9c),

and the second term in the right hand side of Eq.(B10) offsets the second term in (B9d).

The first term in (B9d) offsets the first term, (B9a), considering the commutation relation

at the simultaneous time, δ(ct− ct1)
[

ĵ(in0)µ(x), ĵ
(in0)

0 (x1)
]

and Eq.(B2)(remark the change

of upper or lower subscript). The second term (B9b) vanishes by means of Eq.(B2).

As a result, the second order nonlinear single susceptibility operator Eq.(41) maintains

the gauge invariance, Eq.(25).

With respect to the third order nonlinear single susceptibility, let us check the charge

conservation law. Operating ∂µ to Eq.(42),

∂µ 3! χ̂
µ
µ1µ2µ3

(x, x1, x2, x3) =

1

i~c2

(

−q

mc2

)2

{

θ(ct− ct2)δ(ct− ct1)δ(ct2 − ct3)δ̃µ2 µ3
δ
3(x2 − x3)δ̃

µ
µ1
∂µ

(

δ
3(x− x1)

[

ĵ
(in0) 0(x), ĵ

(in0)
0(x2)

])

(B11a)

+θ(ct− ct3)δ(ct− ct2)δ(ct3 − ct1)δ̃µ3 µ1
δ
3(x3 − x1)δ̃

µ
µ2
∂µ

(

δ
3(x− x2)

[

ĵ
(in0) 0(x), ĵ

(in0)
0(x3)

])

(B11b)

+ θ(ct− ct1)δ(ct− ct3)δ(ct1 − ct2)δ̃µ1 µ2
δ
3(x1 − x2)δ̃

µ
µ3
∂µ

(

δ
3(x− x3)

[

ĵ
(in0) 0(x), ĵ

(in0)
0(x1)

])}

(B11c)

+

(

1

i~c2

)2 −q

mc2

{

δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)δ̃
µ
µ1
∂µ

(

δ
3(x− x1)

[[

ĵ
(in0) 0(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

µ3
(x3)

])

(B11d)

+δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)δ̃
µ
µ1
∂µ

(

δ
3(x− x1)

[[

ĵ
(in0) 0(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

µ2
(x2)

])

(B11e)

+δ(ct− ct2)θ(ct2 − ct3)θ(ct3 − ct1)δ̃
µ
µ2
∂µ

(

δ
3(x− x2)

[[

ĵ
(in0) 0(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

µ1
(x1)

])

(B11f)

+δ(ct− ct2)θ(ct2 − ct1)θ(ct1 − ct3)δ̃
µ
µ2
∂µ

(

δ
3(x− x2)

[[

ĵ
(in0) 0(x), ĵ(in0)µ1

(x1)
]

, ĵ
(in0)

µ3
(x3)

])

(B11g)

+δ(ct− ct3)θ(ct3 − ct1)θ(ct1 − ct2)δ̃
µ
µ3
∂µ

(

δ
3(x− x3)

[[

ĵ
(in0) 0(x), ĵ(in0)µ1

(x1)
]

, ĵ
(in0)

µ2
(x2)

])

(B11h)

+δ(ct− ct3)θ(ct3 − ct2)θ(ct2 − ct1)δ̃
µ
µ3
∂µ

(

δ
3(x− x3)

[[

ĵ
(in0) 0(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

µ1
(x1)

])

(B11i)
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+δ(ct− ct1)δ(ct1 − ct2)θ(ct2 − ct3)δ̃µ1 µ2
δ
3(x1 − x2)

[[

ĵ
(in0) 0(x), ĵ

(in0)
0 (x1)

]

, ĵ
(in0)

µ3
(x3)

]

(B11j)

+δ(ct− ct2)δ(ct2 − ct3)θ(ct3 − ct1)δ̃µ2 µ3
δ
3(x2 − x3)

[[

ĵ
(in0) 0(x), ĵ

(in0)
0 (x2)

]

, ĵ
(in0)

µ1
(x1)

]

(B11k)

+δ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2)δ̃µ3 µ1
δ
3(x3 − x1)

[[

ĵ
(in0) 0(x), ĵ

(in0)
0 (x3)

]

, ĵ
(in0)

µ2
(x2)

]

(B11l)

+δ(ct− ct1)θ(ct1 − ct2)δ(ct2 − ct3)δ̃µ2 µ3
δ
3(x2 − x3)

[[

ĵ
(in0) 0(x), ĵ(in0)µ1

(x1)
]

, ĵ
(in0)

0 (x2)
]

(B11m)

+δ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)δ̃µ3 µ1
δ
3(x3 − x1)

[[

ĵ
(in0) 0(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

0 (x3)
]

(B11n)

+δ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2)δ̃µ1 µ2
δ
3(x1 − x2)

[[

ĵ
(in0) 0(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

0 (x1)
]}

(B11o)

+

(

1

i~c2

)3

{

δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)
[[[

ĵ
(in0) 0(x), ĵ(in0)µ1

(x1)
]

, ĵ
(in0)

µ2
(x2)

]

, ĵ
(in0)

µ3
(x3)

]

(B11p)

+δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)
[[[

ĵ
(in0) 0(x), ĵ(in0)µ1

(x1)
]

, ĵ
(in0)

µ3
(x3)

]

, ĵ
(in0)

µ2
(x2)

]

(B11q)

+δ(ct− ct2)θ(ct2 − ct3)θ(ct3 − ct1)
[[[

ĵ
(in0) 0(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

µ3
(x3)

]

, ĵ
(in0)

µ1
(x1)

]

(B11r)

+δ(ct− ct2)θ(ct2 − ct1)θ(ct1 − ct3)
[[[

ĵ
(in0) 0(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

µ1
(x1)

]

, ĵ
(in0)

µ3
(x3)

]

(B11s)

+δ(ct− ct3)θ(ct3 − ct1)θ(ct1 − ct2)
[[[

ĵ
(in0) 0(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

µ1
(x1)

]

, ĵ
(in0)

µ2
(x2)

]

(B11t)

+δ(ct− ct3)θ(ct3 − ct2)θ(ct2 − ct1)
[[[

ĵ
(in0) 0(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

µ2
(x2)

]

, ĵ
(in0)

µ1
(x1)

]}

. (B11u)

The term (B11p) offsets the term (B11d), applying Eq.(B2) to the most inner commutator

in (B11p). In the same manner, the terms (B11q)-(B11u),respectively, offsets the terms

(B11e)-(B11i), applying Eq.(B2). The terms (B11j)-(B11l) vanishes, applying Eq.(B2) to

the inner commutator at the simultaneous time. The term (B11m) offsets the term (B11a),

applying Eq.(B2) to the most inner commutator. In the same manner, the terms (B11n)-

(B11o), respectively, offsets (B11b)-(B11c), using Eq.(B2).

As a result, the third order nonlinear single susceptibility operator Eq.(42) maintains the

charge conservation law, Eq.(24).

To check the gauge invariance of the third order nonlinear single susceptibility operator,

let us operate ∂µ1 to Eq.(42).

∂
µ1 3! χ̂µ

µ1µ2µ3
(x, x1, x2, x3) =

1

i~c2

(

−q

mc2

)2

{

θ(ct− ct2)δ(ct− ct1)δ(ct2 − ct3)
(

δ̃
µ
µ1
∂
µ1δ

3(x− x1)
)

δ̃µ2 µ3
δ
3(x2 − x3)

[

ĵ
(in0) 0(x), ĵ

(in0)
0(x2)

]

(B12a)

+θ(ct− ct3)δ(ct− ct2)δ(ct3 − ct1)δ̃
µ
µ2
δ
3(x− x2)

(

δ̃µ3 µ1
∂
µ1δ

3(x3 − x1)
) [

ĵ
(in0) 0(x), ĵ

(in0)
0(x3)

]

(B12b)

+ θ(ct− ct1)δ(ct− ct3)δ(ct1 − ct2)δ̃
µ
µ3
δ
3(x− x3)

(

δ̃µ1 µ2
∂
µ1δ

3(x1 − x2)
[

ĵ
(in0) 0(x), ĵ

(in0)
0(x1)

])}

(B12c)
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+

(

1

i~c2

)2 −q

mc2

{

δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3)
(

δ̃
µ
µ1
∂
µ1δ

3(x− x1)
) [[

ĵ
(in0) 0(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

µ3
(x3)

]

(B12d)

+δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2)
(

δ̃
µ
µ1
∂
µ1δ

3(x − x1)
) [[

ĵ
(in0) 0(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

µ2
(x2)

]

(B12e)

−δ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)δ̃
µ
µ2
δ
3(x− x2)

[[

ĵ
(in0) 0(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

0 (x1)
]

(B12f)

+ (−δ(ct− ct2)δ(ct2 − ct1)θ(ct1 − ct3) + δ(ct− ct2)θ(ct2 − ct1)δ(ct1 − ct3))

δ̃
µ
µ2
δ
3(x− x2)

[[

ĵ
(in0) 0(x), ĵ

(in0)
0 (x1)

]

, ĵ
(in0)

µ3
(x3)

]

(B12g)

+ (−δ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2) + δ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2))

δ̃
µ
µ3
δ
3(x− x3)

[[

ĵ
(in0) 0(x), ĵ

(in0)
0 (x1)

]

, ĵ
(in0)

µ2
(x2)

]

(B12h)

−δ(ct− ct3)θ(ct3 − ct2)δ(ct2 − ct1)δ̃
µ
µ3
δ
3(x− x3)

[[

ĵ
(in0) 0(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

0 (x1)
]

(B12i)

+θ(ct− ct1)δ(ct1 − ct2)θ(ct2 − ct3)δ̃µ1 µ2
∂
µ1

(

δ
3(x1 − x2)

[[

ĵ
(in0)µ(x), ĵ

(in0)
0 (x1)

]

, ĵ
(in0)

µ3
(x3)

])

(B12j)

−θ(ct− ct2)δ(ct2 − ct3)δ(ct3 − ct1)δ̃µ2 µ3
δ
3(x2 − x3)

[[

ĵ
(in0)µ(x), ĵ

(in0)
0 (x2)

]

, ĵ
(in0)

0 (x1)
]

(B12k)

+θ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2)δ̃µ3 µ1

(

∂
µ1δ

3(x3 − x1)
)

[[

ĵ
(in0)µ(x), ĵ

(in0)
0 (x3)

]

, ĵ
(in0)

µ2
(x2)

]

(B12l)

+ (−δ(ct− ct1)θ(ct1 − ct2)δ(ct2 − ct3) + θ(ct− ct1)δ(ct1 − ct2)δ(ct2 − ct3))

δ̃µ2 µ3
δ
3(x2 − x3)

[[

ĵ
(in0)µ(x), ĵ

(in0)
0 (x1)

]

, ĵ
(in0)

0 (x2)
]

(B12m)

+θ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)
(

δ̃µ3 µ1
∂
µ1δ

3(x3 − x1)
) [[

ĵ
(in0)µ(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

0 (x3)
]

(B12n)

+θ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2)δ̃µ1 µ2
∂
µ1

(

δ
3(x1 − x2)

[[

ĵ
(in0)µ(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

0 (x1)
])}

(B12o)

+

(

1

i~c2

)3

{(−δ(ct− ct1)θ(ct1 − ct2)θ(ct2 − ct3) + θ(ct− ct1)δ(ct1 − ct2)θ(ct2 − ct3))

[[[

ĵ
(in0)µ(x), ĵ

(in0)
0 (x1)

]

, ĵ
(in0)

µ2
(x2)

]

, ĵ
(in0)

µ3
(x3)

]

(B12p)

+ (−δ(ct− ct1)θ(ct1 − ct3)θ(ct3 − ct2) + θ(ct− ct1)δ(ct1 − ct3)θ(ct3 − ct2))

[[[

ĵ
(in0)µ(x), ĵ

(in0)
0 (x1)

]

, ĵ
(in0)

µ3
(x3)

]

, ĵ
(in0)

µ2
(x2)

]

(B12q)

−θ(ct− ct2)θ(ct2 − ct3)δ(ct3 − ct1)
[[[

ĵ
(in0)µ(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

µ3
(x3)

]

, ĵ
(in0)

0 (x1)
]

(B12r)

+ (−θ(ct− ct2)δ(ct2 − ct1)θ(ct1 − ct3) + θ(ct− ct2)θ(ct2 − ct1)δ(ct1 − ct3))

[[[

ĵ
(in0)µ(x), ĵ(in0)µ2

(x2)
]

, ĵ
(in0)

0 (x1)
]

, ĵ
(in0)

µ3
(x3)

]

(B12s)

+ (−θ(ct− ct3)δ(ct3 − ct1)θ(ct1 − ct2) + θ(ct− ct3)θ(ct3 − ct1)δ(ct1 − ct2))

[[[

ĵ
(in0)µ(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

0 (x1)
]

, ĵ
(in0)

µ2
(x2)

]

(B12t)

−θ(ct− ct3)θ(ct3 − ct2)δ(ct2 − ct1)
[[[

ĵ
(in0)µ(x), ĵ(in0)µ3

(x3)
]

, ĵ
(in0)

µ2
(x2)

]

, ĵ
(in0)

0 (x1)
]}

. (B12u)

27



In the following, we prove the next equation, which leads to the gauge invariance.

(B12p) + (B12d) +(B12j) +(B12s) +(B12r)+(B12n) = 0, (B13)

(B12q) + (B12e) +(B12l) +(B12t) +(B12u)+(B12o) = 0, (B14)

(B12m) + (B12a) +(B12k) = 0, (B15)

(B12i) + (B12c) +(B12h) = 0, (B16)

(B12f) + (B12b) +(B12g) = 0. (B17)

Eq.(B13): The first term of (B12p) offsets (B12d), using Eq.(B2). To the inner double commu-

tator in the second term of (B12p), the nest Jacobi identity is applied:

[[[

ĵ(in0)µ(x), ĵ
(in0)

0 (x1)
]

, ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ3
(x3)

]

(B18)

= −
[[[

ĵ
(in0)

0 (x1), ĵ
(in0)
µ2
(x2)

]

, ĵ(in0)µ(x)
]

, ĵ(in0)
µ3
(x3)

]

−
[[[

ĵ(in0)
µ2
(x2), ĵ

(in0)µ(x)
]

, ĵ
(in0)

0 (x1)
]

, ĵ(in0)
µ3
(x3)

]

.

Furthermore, the inner commutator (, assuming at the simultaneous time) in the first

term of Eq.(B18) , one may apply Eq.(B2). The part including this factor in the

second term of (B12p) offsets the term (B12j). In the second term of (B12p), the part

including the second term of Eq.(B18) offsets the first term of (B12s). Up to now,

(B12p)+(B12d)+(B12j)+ the first term of (B12s)= 0 has been shown.

Next, to the outer double commutator in the second term of (B12r), let us apply the

next Jacobi identity,

[[[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]

, ĵ(in0)
µ3
(x3)

]

, ĵ
(in0)

0 (x1)
]

(B19)

= −
[[

ĵ(in0)
µ3
(x3), ĵ

(in0)
0 (x1)

]

,
[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]]

+
[[[

ĵ(in0)µ(x), ĵ(in0)
µ2
(x2)

]

, ĵ
(in0)

0 (x1)
]

, ĵ(in0)
µ3
(x3)

]

.

The commutator in the first term of Eq.(B19):
[

ĵ
(in0)
µ3(x3), ĵ

(in0)
0 (x1)

]

is the commu-

tator at the simultaneous time, therefore, we may use Eq.(B2). The part including

this factor in (B12r) offsets the term (B12n). In (B12r), the part including the second

term of Eq.(B19) offsets the second term of (B12s). Up to now, (B12r)+(B12n)+ the

second term of (B12s)= 0 is shown.

Together with the previous result, Eq.(B13) holds.
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Eq.(B14): This equation is Eq.(B13) with the replacement x2 ↔ x3 and µ2 ↔ µ3, therefore,

Eq.(B14) holds.

Eq.(B15): The first term of (B12m) offsets (B12a), using Eq.(B2).

To the double commutator in the second term of (B12m), the nest Jacobi identity is

applied:

[[

ĵ(in0)µ(x), ĵ
(in0)

0 (x1)
]

, ĵ
(in0)

0 (x2)
]

(B20)

= −
[[

ĵ
(in0)

0 (x1), ĵ
(in0)

0 (x2)
]

, ĵ(in0)µ(x)
]

−
[[

ĵ
(in0)

0 (x2), ĵ
(in0)µ(x)

]

, ĵ
(in0)

0 (x1)
]

=
[[

ĵ(in0)µ(x), ĵ
(in0)

0 (x2)
]

, ĵ
(in0)

0 (x1)
]

In the above, we use the inner commutator (at the simulatenesou time) in the first

term of the second hand side becomes zero, using Eq.(B2). The second term of (B12m)

includes the factor of Eq.(B20) and offsets (B12k).

As a result, Eq.(B15) holds.

Eq.(B16): To the double commutator in (B12i), we apply the next Jacobi identity:

[[

ĵ(in0) 0(x), ĵ(in0)
µ2
(x2)

]

, ĵ
(in0)

0 (x1)
]

(B21)

= −
[[

ĵ(in0)
µ2
(x2), ĵ

(in0)
0 (x1)

]

, ĵ(in0) 0(x)
]

−
[[

ĵ
(in0)

0 (x1), ĵ
(in0) 0(x)

]

, ĵ(in0)
µ2
(x2)

]

.

The inner commutator in the first term of Eq.(B21) is the commutator at the simul-

taneous time, therefore, we may use Eq.(B2). The part including this factor in (B12i)

offsets the term (B12c). In (B12i), the part including the second term of Eq.(B21)

offsets the second term of (B12h). The first term of (B12h) is zero, because the inner

commutator included in this term is commutator at the simultaneous time and leads

to zero, using Eq.(B2).

Therefore, Eq.(B16) holds.

Eq.(B17): This equation is Eq.(B16) with the replacement x2 ↔ x3 and µ2 ↔ µ3, therefore,

Eq.(B17) holds.

As the summery, Eqs.(B13)-(B17) hold and the third order nonlinear single susceptibility
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Eq.(42) maintains the gauge invariance Eq.(25).
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ドレスト光子への測定理論的アプローチ
An approach from measurement theory to dressed photon

⃝(PC)岡村和弥 1 (1.名大情報)
⃝(PC)Kazuya Okamura1 (1. Nagoya Univ.)

E-mail: okamura@math.cm.is.nagoya-u.ac.jp

量子測定理論の定式化を拡張することによって，電磁場と物質の相互作用により生じるドレス

ト光子のモデリングがより柔軟に行える可能性について本講演では議論する。

量子系での測定について Heisenberg以来の伝統的な枠組みの中で「測定は対象の状態を乱す」

などと言われてきた。γ線顕微鏡の例では，有限の時間の間だけ相互作用で γ線により被測定系

である粒子の位置と運動量が変化することが知られている。概ねこれまで量子測定理論が対象と

して想定してきたのは，この例のように測定前は独立な被測定系と測定系（測定装置のミクロ端）

を有限の時間相互作用させ測定系の物理量の変化をメーターに用いる場合である [2, 3]。量子場の

測定理論での有界時空領域における局所測定は相対論的な状況を含む形に従来の量子測定理論の

定式化を拡張したものである [4]。

近接場光学・ドレスト光子を対象とした測定はその現象のあり方から，系によっては遠方での

放射光に頼った測定だけでは不十分で，測定装置と被測定系が近接した事実上その 2つが区別不

可能な状況での測定を取り扱わなければならない。それ故先行研究通りに測定理論を適用できな

い。本講演ではドレスト光子の現象で想定されるタイプの測定の一般的な定式化を代数的量子論

の枠組みにおいて行う。局所ネット (local net)の概念にもとづいて時空領域の物理量の指定を行う

が，メーターに関与しうる部分がこれまでの測定理論での扱いとは異なるのが本質的で，測定し

ない状況と測定する状況の比較がマクロに可能な記述をしなければならない。同時に，Heisenberg

描像での測定理論 [5]を参考にした記述にも触れる。
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ドレスト光子の局在性を理解する為の数理モデルの検討
On a mathematical model describing the localization property of dressed photons

⃝安藤浩志 (千葉大理)
⃝Hiroshi Ando

E-mail: hiroando@math.s.chiba-u.ac.jp

ドレスト光子はナノメートル寸法の領域で電子や電子・正孔対と光子が結合して出来た準粒子で

あり,自由空間を伝搬する光とは本質的に異なる振る舞いを示す. またその性質が伝搬光を用いて

は実現できなかった様々な光デバイスの設計に活用されている [8]. その性質の数理的側面を研究

する事は大切であるが,その為に量子化された電磁場とナノ寸法の結晶中の電子等との相互作用を

記述する理論が必要である [1, 2]. 形式的には量子化された電磁場は無限個の調和振動子の集まり

の様に見えるが,そこには無限自由度の力学変数を持つ系の量子化を考えると現れる非同値な表現

達を考察する必要が現れ,具体的モデルを構築し,その解析を行う事と並行して作用素代数的考察

も重要になる [3, 4, 6, 7]. またドレスト光子の存在を直接観測す事は出来ず,伝搬光の散乱の様子か

らその様子を推測する必要性から,ミクロ・マクロ双対性の観点が鍵となる [6]. 本講演では電磁場

の作用素のつくる代数系の性質を調べ,そこから局在するという性質をどのように導く事が可能か

を検討する. 巨視的物質と電磁場に囲まれたナノ物質間のドレスト光子を介した相互作用は [5]に

より,湯川関数で与えられる有効ポテンシャルの形をしている事が示されている. 本講演では作用

素代数の観点からドレスト光子の有効相互作用の形について議論し, [5]との関連について,分かっ

た事を報告する.

謝辞

本研究は (社)ドレスト光子研究起点の助成を受けています.

参考文献

[1] 新井朝雄,フォック空間と量子場上・下 (日本評論社), 2000.

[2] 新井朝雄・河東泰之・原隆・廣島文生,量子場の数理 (数学書房), 2016.

[3] Ola Bratteli and Derek William Robinson, Operator Algebras and Quantum Statistical Mechanics I,

II (Springer), 1986.

[4] Rudolf Haag, Local quantum physics (Springer), 1992.

[5] K. Kobayashi and M. Ohtsu, J. Microscopy 202, 279 (2001).

[6] 岡村和弥・小嶋泉,無限量子系の物理と数理 (SGC), 2013.

[7] 小嶋泉,量子場とミクロ・マクロ双対性 (丸善出版), 2013.

[8] 大津元一,ドレスト光子 (朝倉書店), 2013.

第79回応用物理学会秋季学術講演会 講演予稿集 (2018 名古屋国際会議場 (愛知県名古屋市))19a-437-5 

© 2018年 応用物理学会 03-178 3.12



量子確率論の見地からみたドレスト光子
Dressed Photons from the Viewpoint of Quantum Probability

⃝西郷　甲矢人 (長浜バイオ大学)
⃝Hayato Saigo (Nagahama Institute of Bio-Science and Technology)

E-mail: h saigoh@nagahama-i-bio.ac.jp

ドレスト光子 (Dressed Photon, DP）[4]は、ナノスケールにおける光と物質の相互作用において

新規に発見された多くの現象を理解するために不可欠な概念である。この概念は、物理学および

一般的な工学における基本概念についての再吟味を促す。特に、「合成系」の概念およびミクロ・

マクロの関係の定式化の概念的・数学的発展に役立つと考えられる（その際、「ミクロ・マクロ双

対性」[5]の考えが重要な指針となる)。

本講演では、ドレスト光子の数理物理学的側面を、量子確率論（Quantum Probability)[1, 3]とい

う観点から考察する。量子確率論は、コルモゴロフが定式化した現代の（古典）確率論 [2]と、量

子論の双方をその一部として包含する、「一般化された確率論」の枠組みである。

講演者は、酒匂宏樹博士（新潟大学）とともに、量子古典対応の数理をこの量子確率論の枠組

みでとらえる研究を行ってきた [6]。その結果、量子古典対応における「逆正弦法則」とよばれる

確率分布が果たす重要な役割が明らかになってきた。さらにこの間講演者は、この数理がドレス

ト光子の理解にも役立つことを発見し、現在その内容を深化させつつある。

本講演では、ドレスト光子を量子確率論を通じてとらえることにより、この逆正弦法則がドレ

スト光子現象においても重要な役割を果たすことを示す。その応用として、ドレスト光子が「尖

端」に生ずる機構の普遍的な理解と、そこから示唆される新しい現象の予言について提起する。
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波長変換膜を目的とした EVA 樹脂への酸化亜鉛量子ドット-色素分散手法の開発 

Development of dispersing method of ZnO quantum dots and dye in EVA resin for 

wavelength conversion film 

電機大 1，ナノフォト推進機構 2 ○野村 航 1，山岸 亙 2，川添 忠 1 

TDU1, NPEO 2 ○Wataru Nomura1, Wataru Yamagishi2, Tadashi Kawazoe1 

E-mail: wnomura@mail.dendai.ac.jp 

 

我々の研究グループではこれまでに光波長変換膜として、酸化亜鉛量子ドット(ZnO-QD)と有機

色素を含有するシリコーン樹脂膜の製造手法を確立し、結晶系 Si 太陽電池のエネルギー変換効率

向上や紫外光を白色光に変換する薄膜の作製と評価を行ってきた[1,2]。これは ZnO-QD から色素

分子へドレスト光子を介したエネルギー移動[3]が起こることで高効率に光の波長変換が行われる

もので、紫外光から可視光への変換において 90%以上の量子効率を達成している。今回、同原理

に基づく波長変換材料の適用範囲をより広げるべく、透明性や耐候性に優れ接着剤などに応用可

能なプラスチック材料であるエチレン酢酸ビニル共重合体(EVA)樹脂のペレットに ZnO-QD と色

素を分散させる手法を開発したのでこれを報告する。 

実験のための EVA ペレットには東ソー(株)ウルトラセン 710 を用いた。ペレット形状を破壊し

ない変換膜の作製プロセスとして、まずトルエン中で亜鉛錯体と過酸化水素水を常温で混合し、

反応熱のみで ZnO-QD の前駆体を作製した。この前駆体溶液に EVA ペレットと色素(Exciton 社、

Coumarin 545)を混合し静置することで、膨潤した EVA に ZnO-QD と色素を内包させることに成

功した。また比較のため同手法で色素のみを内包させたペレットも作製した。 

作製した試料と、QD、色素を含有させる前の EVA ペレットの外観写真を Fig.1a に示す。色素

を含む 2 試料は白色光下ではほぼ同等の外観を示し、内包する色素量も同程度と考えられるが、

Fig.1b に示す水銀ランプ照射下では ZnO-QD を内包する試料がより明るい蛍光を示した。分光蛍

光光度計(日本分光(株)、FP-8300)により取得した蛍光スペクトルを Fig.2 に示す。赤線で示す ZnO-

QD を内包する試料では 525 nm のピークが強調され、特定のエネルギー準位からの発光強度が増

加したことから、これは ZnO-QD からのエネルギー移動を示す結果と言える。 

参考文献 [1] 山岸他、2016 年秋応物講演会、16a-B12-6、 [2] 川添他、2017 年秋応物講演会、15a-

F202-10、 [3] 大津元一著「ドレスト光子」朝倉書店(2013) 

 
Fig.1 Photos of EVA pellets under (a) white light and 

(b) mercury lamp. 

 
Fig.2 Emission spectra of wavelength conversion 
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積層型 Si-LED の作製と評価 
Fabrication and demonstration of stacked Si-LED connected in series 
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我々はドレスト光子フォノン(DPP)アニールによって
間接遷移型半導体であるシリコン(Si)を用いた発
光素子の開発を行っている[1-5]。Si の pn 接合に
おける電子正孔再結合による発光は極めて弱い。
これは Si の伝導体の底と価電子帯の頂上の電子
の波数が大きく異なり、光子放出の際満たされる
べき波数保存則が成り立たないからである。DPP
アニールにより特定の規則性を持つドーパント対
を Si 結晶中に形成するとこの性質は変化する。ド
ーパント原子は周囲の Si 原子と質量の異なり格子
振動（フォノン）の反射境界となる。その結果、２つ
のドーパント対には特定のモードのフォノンが局在
する。この局在フォノンの波数が Si の伝導体の底
と価電子帯の頂上の波数の差と一致する場合、ド
ーパント対周辺の電子正孔対はフォノンから波数
を受け取り光子を放出する。 
 DPP アニールでは外部から照射する光による誘

導放出を利用している。このため、作製されたLED
はレーザーのような閾値特性を示す。通常の使用
にはこの閾値の存在は障害にはならないが、例え
ば細かなパワー調整が必要な場合、PWM 制御等
が必須になること、閾値の存在が発光強度の不安
定性をもたらすことなどが危惧される。今回の発表
では非常に微小な Si-LED を積層した素子試作し、
通常の動作範囲には閾値が現れないことを確認し
たので報告する。 
 

Fig.1. 
 
Fig.1.に今回作製した素子の拡大写真を示す。1

つの Si チップサイズは 1mm×0.2mm×0.1mm であ
る。3 つの素子を直接接触させて並べ直列接続さ
せる方法で作製した。Fig.2 に作製した素子の電
流電圧特性および DPP アニール後に撮影した発
光の赤外写真を示す。また Fig.2 の写真に示すよ
うに DPP アニール後には素子間の出力光強度の

大きなバラツキは見られなかった。 

Fig.2. 
 
Fug.3 に光出力の注入電流依存性を示す。従来

の Si-LED のように指数関数的な閾値は見られず、
比較的滑らかな立ち上がりになった。この理由は
素子が 3 つの領域に分断されているため、誘導放
出の影響が小さくなったためだと思われる。 
 

Fig.3 

[1] T. Kawazoe & M. Ohtsu, Appl. Phys. A, 115, 
127-133, (2014). 
[2] T. Kawazoe, et al., Appl. Phys. B-Lasers and 
Optics, 98, 5-11 (2010). also 107, 659-663 (2012). 
[3] H. Tanaka, et al., Appl. Phys. B-Lasers and Optics, 
108, 51-56 (2012). 
[4]Y. Tanaka, K. Kobayashi, J. Microscopy   229 
228-232(2008). 
[5] 川添忠、橋本和信、杉浦聡、大津 元一、2017
年第 78 回秋季応用物理学会、福岡  講演番号
7a-A405-5. 
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高出力ホモ接合シリコンレーザー 
High power Homojunction Silicon Laser 
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我々はドレスト光子フォノン(DPP)アニールによっ
て間接遷移型半導体であるシリコン(Si)を用いた
LED, レーザーなど発光素子の開発を行っている
[1-3]。これらの素子は通常の直接遷移過程半導
体を用いた素子とは異なり発光遷移過程はドレス
ト光子フォノンと呼ばれる中間状態を介する。 
 通常の pn 接合 Si では注入電流による発光は
極めて弱い。注入された電子と正孔のエネルギー
は非発光再結合する。これは Si の伝導体の底と
価電子帯の頂上の電子の波数が大きく異なり、光
子放出の際満たされるべき波数保存則が成り立
たないからである。ここで特定の規則性を持つド
ーパント対が Si 結晶中に存在すると状況は一変
する。周囲の Si 原子と質量の異なるドーパント原
子は格子振動すなわちフォノンの反射境界となる。
その結果、２つのドーパント対には特定のモード
のフォノンが集中する[4]。この局在フォノンの波
数が Si の伝導体の底と価電子帯の頂上の波数の
差と一致する場合、ドーパント対周辺の電子正孔
対は速やかにフォノン散乱され光子を放出すると
予想される。このような特異なドーパント対配列を
作り出す方法は DPP アニールと呼ばれる[1-3]。 
 DPP アニールされた Si の pn 接合部はレーザー

の活性層としても機能する。前回、この DPP アニ
ールの効果を大きくするためにこれまで用いてい
たドーパント種を変更し、原子の質量数の Si との
違いがより大きな新しいドーパントを用いて Si レー
ザーを作製した(Fig.1)[5]。 

Fig.1 
 
その結果、これまでよりも低い電圧で動作する Si

レーザーの動作検証に成功した。Si レーザーチッ
プは閾値以下でチップ全体が発光し、やがて閾
値付近でその一部が輝点のように発光を強める。
さらに電流を増やすと素子全体のレーザー発振
が確認される(Fig.2)。 
 

 
Fig.2 

Fig.3 にドーパント種や構造の異なる 4 種の Si レ
ーザーの光出力に対する注入電流依存性を示す。
この結果から素子長を 30mm に増やし、素子冷却
の強化やパルス動作にする事で注入電流を 3～5
倍に増やすことが出来れば 100W 級の Si レーザ
ーが実現可能であることが分かったので、作製し
た素子長 30mm の Si レーザーについて動作報告
を行う予定である。 

Fig.3 

[1] T. Kawazoe & M. Ohtsu, Appl. Phys. A, 115, 
127-133, (2014). 
[2] T. Kawazoe, et al., Appl. Phys. B-Lasers and 
Optics, 98, 5-11 (2010). also 107, 659-663 (2012). 
[3] H. Tanaka, et al., Appl. Phys. B-Lasers and Optics, 
108, 51-56 (2012). 
[4]Y. Tanaka, K. Kobayashi, J. Microscopy   229 
228-232(2008). 
[5] 川添忠、橋本和信、杉浦聡、大津 元一、2017
年第 78 回秋季応用物理学会、福岡 講演番号
7a-A405-5.
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