COLLECTED PAPERS on
Off-shell Science

\Vol. 33

January 2018 — December 2018

Motoichi OHTSU!?

1 Chief Director,
(General Incorporated Association)
Research Origin for Dressed Photon

2 Prof. Emeritus, The University of Tokyo



MEMBERS
(From April 1, 2018)

[I] RESEARCH ORIGIN FOR DRESSED PHOTON

Chief Director

Motoichi OHTSU™

Directors

Hidefumi HORI
Masayuki NAYA
Hirofumi SAKUMA
Teruo MURAKAMI

Auditor

Satoshi SUGIURA

Advisors

Izumi OJIMA

Junji MIYAHARA
Masuo FUKUI
Tadashi KAWAZOE

Visiting Scientists

Hayato SAIGO
Kazuya OKAMURA
Itsuki BANNO
Hiroshi ANDO
Suguru SANGU

Secretary

Mari KAZAMA

(RODREP) *

(Dr. Eng.)

(Dr. Eng.)
(Dr. Eng.)
(PhD.)

(Dr. Sci.)
(Dr. Eng.)
(Dr. Eng.)
(Dr. Sci.)

(Dr. Sci.) (Nagahama Inst. Bio-Sci. and Tech.)
(Dr. Sci.) (Nagoya Univ.)
(Univ. Yamanashi)
(Dr. Sci.) (Chiba Univ.)
(Dr. Eng.) (Ricoh Co. Ltd.)



(*) (General Incorporated Association) Research Origin for Dressed Photon
(RODreP)
Phone: 090-1603-0562
E-mail: rodrep-general@rodrep.or.jp
URL.: http://www.rodrep.or.jp
(Labs.)
c/o Yokohama Technology Center, NICHIA Corp.
3-13-19 Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa 221-0022, Japan
(Executive office)
Foundation for the Promotion of Engineering Research,
c/o Institute of Engineering Innovation, School of Engineering,
The University of Tokyo,
2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

(—fAEREN) R LA YRR FE i
Phone: 090-1603-0562
E-mail: ohtsu@nanophotonics.t.u-tokyo.ac.jp
URL.: http://www.rodrep.or. jp
(WFFERT)
T221-0022 Az 1| WA i %) 1| X AT BT 3—13—19
HilfbZ T (BK) BiEfdire o2 — 10
(8 )=)
—RIMHTEN  REMHER=
T113-8656 HAUAN SCAUXARAE 2-11-16 B KSR FEBE TRk 78R
R E I FEREAE Y

(**) Professor Emeritus, The University of Tokyo and Tokyo Institute of Technology
FORUR A EH, FOX TR RPAFT AR

II



LIST OF PAPERS

[I] ORIGINAL PAPERS

N.A.



[1I] PRESENTATIONS IN INTERNATIONAL CONFERENCES

[1] M. Ohtsu, “High-power Silicon Light-emitting Diodes and Lasers by Dressed
Photons,” Proceedings and Abstract Book of the European Advanced Materials
Congress (EAMC2018), August 20-23, 2018, Stockholm, Sweden, p.7
[IAAM Medal Lecture]

[2] T. Kawazoe and M. Ohtsu, “High power Si light emitting device using dressed

photon,” Abstract of the 7" Advanced Lasers and Photon Sources (ALPS2018),
April 24-27, 2018, Yokohama, Japan, paper number ALPS9-G1-2.

II



[l REVIEW PAPERS

N.A.

II1



[IV] PREPRINT DEPOSITORIES

[IV-1] OFF-SHELL ARCHIVE

[Original papers]

[1] I. Banno and M. Ohtsu, “Logical Fallacy of using the Electric Field in Non-resonant
Near-field Optics”, Oft-shell Archive (August 2018), Offshell:18080.001.v1.
DOI:10.14939/18080.001.v1

[2] M. Ohtsu and T. Kawazoe, “High-Power Infrared Silicon Light-emitting Diodes
Fabricated and Operated using Dressed Photons,” Off-shell Archive (April 2018),
Offshell:18040.001.v1.

DOI:10.14939/18040.001.v1

[Review papers]

[1] M. Ohtsu, “Embarking on theoretical studies for off-shell science,” Oft-shell Archive
(November 2018), Offshell:1811R001.v1.
DOI:10.14939/1811R001.v1

[2] M. Ohtsu, T. Kawazoe, “Gigantic Ferromagnetic Magneto-Optical Effect in a SiC
Light-emitting Diode Fabricated by Dressed-Photon—Phonon-Assisted Annealing,”
Off-shell Archive (September 2018), OffShell: 1809R.001.v1.
DOI:10.14939/1809R.001.v1

[3] M. Ohtsu and T. Kawazoe, “Principles and Practices of Si Light Emitting Diodes using
Dressed Photons,” Off-shell Archive (May 2018), Offshell:1805R.001.v1.
DOI:10.14939/1805R.001.v1

[4] M. Ohtsu and T. Kawazoe, “Experimental estimation of the maximum size of a

dressed photon,” Off-shell Archive (February 2018), Offshell:1802R.001.v1.
DOI:10.14939/1802R.001.v1

[IV-2] arXiv

[1] I. Banno and M. Ohtsu, “Logical Fallacy of using the Electric Field in Non-resonant
Near-field Optics,” arXiv:1807.10991v1 [phycisc.optics] 29 Jul 2018.

IV


http://offshell.rodrep.org/?p=161

[V] PUBLISHED BOOKS

[1] M. Ohtsu, “Historical Review of Dressed Photons: Experimental Progress and
Required Theories,” in Progress in Nanophotonics 5, ed. by T. Yatsui, Springer,
Heidelberg, October 2018, pp.1-51.



[VI] PRESENTATIONS IN DOMESTIC CONFERENCES

[1] I. Banno and M. Ohtsu, “A Logical Fallacy of Electric Field in the Dressed-Photon
Systems,” Abstracts of the 79" Jpn. Soc. Appl. Phys. Autumn Meeting, September
2018, Nagoya, Japan, paper number 19a-437-1.

[ 7g, REITL—. [ FL X MEFRTOESZOBEOBHE] | % 79 BISH
WK AR S TR (R, 2018 £ 9 /1) | RElEE 7 19a-437-
1]

[2] I. Banno, T. Kawazoe, and M. Ohtsu, “Diamagnetic Current in the Dressed-Photon
Systems, “Abstracts of the 79" Jpn. Soc. Appl. Phys. Autumn Meeting, September
2018, Nagoya, Japan, paper number 19a-437-2.

[Sr7g, JIRE, KEt—, RV R MEFROKBEMEER) | % 79 BEGSH
W PRI AR S TRAE (AR, 2018 42 9 /1) | RElEE 7> 19a-437-
2]

[3] H. Sakuma, I. Ojima, and M. Ohtsu, “A mathematical expression of stationary
dressed photon as a composite of timelike and spacelike fields,” Abstracts of the 79"
Jpn. Soc. Appl. Phys. Autumn Meeting, September 2018, Nagoya, Japan, paper
number 19a-437-3.

[/ RT3L3C, ZNESR . KREETC—.  TTimelike & Spacelike/2 33 DA FLC KL D14
RRED R LA MGFORFERIRI | B1RIS LRSI S T
fate (AR, 20184E9)) | FH A 519a-437-3]

[4] S. Sangu, H. Saigo, and M. Ohtsu, “Simulation of Dressed Photon Energy Transfer
based on Quantum-Walk Model,” Abstracts of the 79" Jpn. Soc. Appl. Phys.
Autumn Meeting, September 2018, Nagoya, Japan, paper number 19a-437-7.

[=Ef, EIHERA, KET—. [BFU+—2F7 L&V RLA M
FZXNAXF—BEIY I 2 b—ra ) | BRI RS KR =
THE (KR, 20184F9H) | FRIE T 519a-437-7]

[5] T. Kawazoe and M. Ohtsu, “Consideration of injection current dependence of Si-
LED using Stefan-Boltzmann law,” Abstracts of the 79" Jpn. Soc. Appl. Phys.
Autumn Meeting, September 2018, Nagoya, Japan, paper number 19a-437-8.

Diwis, Kge—, a7 77 Ay~ AN L ASi-LED OFEANEGR
KFEMEDELR ] | BIIRICHYBLI ST GRS TRE (R,
201849 1) | {7 7519a-437-8]

[6] S. Sakuma, I. Ojima, and M. Ohtsu, “On the existence of dressed photon constant and

its implication,” Abstracts of the 65" Jpn. Soc. Appl. Phys. Spring Meeting, March
2018, Tokyo, Japan, paper number 19p-F310-12.

VI



[VEARIBLSC, /NBIR . KT —. TR R METFERDOFERRENEE Z DR
325 b o) . 5656 [ELAmE S FEEHinEES TRE GRl, 2018 4
3 H) . iEFE S 19p-F310-12]

[7] T. Kawazoe and M. Ohtsu, “Operation with 1W-optical output of Si-LED and current
dependence,” Abstracts of the 65" Jpn. Soc. Appl. Phys. Spring Meeting, March 2018,
Tokyo, Japan, paper number 19p-F310-13.

UIRE, KEoo—., ISiFIEH A A — FOXH T IW BE & Bk 5
65 [Hl)& WA R BTN TARE ORRL, 2018423 1) | FRERE -
19p-F310-13]

[8] I Banno and M. Ohtsu, “Theory of Non-resonant Effect in Near-field Optics III:

Approach to a Base of Dressed Photon employing Non-linear Response Theory under

a Preferable Gauge Condition,” Abstracts of the 65" Jpn. Soc. Appl. Phys. Spring

Meeting, March 2018, Tokyo, Japan, paper number 19p-F310-15.

[ BF75, KETE—., TSR 5 IR IR RO BRI « FEHE
JICEBLGRIC L D RV R BT OIS T ORI, 7 — U RFEORF | % 65
B LR S R AR = TR (R 2018 42 3 ) | Gl 5 19p-
F310-15]

VII



[VII] AWARDS

[1] M. Ohtsu, I4AM Medal, International Association of Advanced Materials (IAAM),
August 22, 2018, Stockholm.

VIII



[VIII] APPENDIX
Publications and Presentations by RODreP members.

[1I] PRESENTATIONS IN INTERNATIONAL CONFERENCES

[1] 1. Ojima, “Micro-Macro duality for Inductions/ Reductions,” Abstract of the 18th
Workshop "NONCOMMUTATIVE PROBABILITY, OPERATOR ALGEBLA,
RANDOM MATRICES AND RELATED TOPICS, WITH APPLICATIONS", July 15-
21, Bedlewo, Poland, date of presentation July 21, 2018.

[IV] PREPRINT DEPOSITORIES
[IV-1] OFF-SHELL ARCHIVE
[Original papers]

[1] I. Ojima, “Micro-Macro Duality for Inductions/ Reductions,” Off-shell Archive
(September 2018), Offshell:18090.001.v1.
DOI:10.14939/18090.001.v1

[2] I. Banno, “Theory of Single Susceptibility for Near-field Optics Equally Associated
with Scalar and Vector Potentials,” Offshell Archive (September 2018), Offshell:
18090.002.v1.

DOI:10.14939/18090.002.v1

[3] Izumi Ojima and Hayato Saigo, “Photon localization revisited,” Off-shell
Archive (April 2018), Offshell:18040.002.v1.
DOI:10.14939/18040.002.v1

[IV-2] arXiv

[1] I. Banno, “Theory of Single Susceptibility for Near-field Optics Equally Associated
with Scalar and Vector Potentials,” arXiv:1807.10992v1 [phycisc.optics] 29 Jul 2018.

[V] PUBLISHED BOOKS

[1] H. Sakuma, “Virtual Photon Model by Spatio-Temporal Vortex Dynamics,” in
Progress in Nanophotonics 5, ed. by T. Yatsui, Springer, Heidelberg, October 2018,
pp.53-77.

[2] H. Saigo, “Quantum Probability for Dressed Photons: The Archsine Law in

Nanophotonics,” in Progress in Nanophotonics 5, ed. by T. Yatsui, Springer,
Heidelberg, October 2018, pp.79-106.

IX



[3] I. Ojima, “Control over Off-Shell QFT via Induction and Imprimitivity,” in Progress
in Nanophotonics 5, ed. by T. Yatsui, Springer, Heidelberg, October 2018, pp.107-
136.

[4] K. Okamura, “An Approach from Measurement Theory to Dressed Photon,” in
Progress in Nanophotonics 5, ed. by T. Yatsui, Springer, Heidelberg, October 2018,
pp.137-167.

[5] L. Banno, “Response Theory Supporting Dressed Photons,” in Progress in
Nanophotonics 5, ed. by T. Yatsui, Springer, Heidelberg, October 2018, pp.169-200.

[VI] PRESENTATIONS IN DOMESTIC CONFERENCES

[1] K. Okamura, “An approach from measurement theory to dressed photon,” Abstracts
of the 79" Jpn. Soc. Appl. Phys. Autumn Meeting, September 2018, Nagoya, Japan,
paper number 19a-437-4.

[FASFOTR, [ R LA M NF~ORIEHERA T 7 o —F] | 79005 S
DI TRE (AR, 20184E9H) | i#lH%E 519a-437-4)

[2] H. Ando, “On a mathematical model describing the localization property of dressed
photons,” Abstracts of the 79" Jpn. Soc. Appl. Phys. Autumn Meeting, September
2018, Nagoya, Japan, paper humber 19a-437-5.

[ZisEE, TRV METORIENZBEfFT 2 A0BBEET LVORG | &
RSB E KA S TRt (AR, 20184R9H) | GhlHE &
19a-437-5]

[3] H. Saigo, ”Dressed Photons from the Viewpoint of Quantum Probability,” Abstracts
of the 79" Jpn. Soc. Appl. Phys. Autumn Meeting, September 2018, Nagoya, Japan,
paper number 19a-437-6.

[VEACH RN, TEFHERGRD AN S Z7z B LA RET-) o B9 L
FRMFANEE S TRE (AR, 20184F9H) | GEFE 519a-437-60]

[4] W. Nomura, W. Yamagishi, and T. Kawazoe, ”” Development of dispersing method of
ZnO quantum dots and dye in EVA resin for wavelength conversion film,” Abstracts
of the 79" Jpn. Soc. Appl. Phys. Autumn Meeting, September 2018, Nagoya, Japan,
paper number 19a-437-9.

[EPARAL, 1 B, IV B, DRSS B & L7ZEVA S~ Rl
BT RNy M-BRSBFEORTE] « FEIIRIS A BT il =
THaE (&dE. 20184:9H) | F#iHEE 519a-437-9]

[5] T. Kawazoe, K. Hashimoto, and S. Sugiura, “Fabrication and demonstration of
stacked Si-LED connected in series,” Abstracts of the 79" Jpn. Soc. Appl. Phys.

X



Autumn Meeting, September 2018, Nagoya, Japan, paper number 19a-437-13.
s & BATE . IR, [P MS1-LEDDO/ERL & 3F4fh ) | 79I

ST iEE S TR (KR, 201849H) | GllHEE 519a-437-
13])

[6] T. Kawazoe, K. Hashimoto, and S. Sugiura, “High Power Homojunction Silicon Laser,”

Abstracts of the 65™ Jpn. Soc. Appl. Phys. Spring Meeting, March 2018, Tokyo,
Japan, paper number 19p-F310-14.

DIERE, ARG, R, SO REEG Y Y ar b—9—] % 65 A

G R B EINR R TRI%E OO, 2018 45 3 A) | W& % 19p-
F310-14]

XI



[I] ORIGINAL PAPERS




[lI]] PRESENTATIONS
IN INTERNATIONAL CONFERENCES




European Advanced Materials Congress

Published online by the VBRI Press

High-power Silicon Light-emitting Diodes and
Lasers by Dressed Photons

M. Ohtsu’?

!(Director-in-chief) Research Origin for Dressed Photon, Yokohama 221-0022, Japan
(Professor Emeritus) The University of Tokyo, Tokyo 113-8636, Japan

Table of contents

This keynote talk includes 1. Introduction, 2. Dressed Photon (Fig.1),
3. Fabrication (Fig.2), 4, Operation (Figs.3-5), 5. Future outlook, and 6. Summary.
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Abstract

There is a long-held belief in material science and technology that a crystalline silicon (Si), an indirect-transition-type
semiconductor, is not suitable for use in light emitting devices. The problem is that the probability of the interaction between an
electron-hole pair and phonons is very low. However, it has been solved by using a dressed photon (DP) and a dressed-photon—
phonon (DPP), which are novel off-shell quantum fields in a nanometric space'). This keynote talks reviews the use of a
crystalline Si to construct high-power light emitting diodes (LED) and diode lasers. The spatial distribution of B atoms (p-type
dopant) is controlled autonomously by the DPP-assisted annealing to satisfy the momentum conservation law®. Besides the
fabrication step, DPs and DPPs are also used in the operation of the device. The fabricated devices exhibit a novel property
called “photon breeding”, which originates from the DPs and DPPs. In photon breeding, the photon energy and photon spin of
the light emitted from the device are identical to those of the light that irradiates the crystal during the DPP-assisted annealing.
The CW optical power emitted from the fabricated LED was as high as 1 W? at 1.3 micron-wavelength. By modifying the
device structure of the previously fabricated Si-laser”, high-power infrared laser device was successfully fabricated by utilizing
the very low infrared absorption of crystalline Si. The cavity length was increased to 30 mm to realize high power. After the
DPP-assisted annealing, a CW output power as high as 100 W was obtained at 1.9 micron-wavelength®. The last part of the
speech is devoted to reviewing details of the features of DPs and future outlook of the DP research.

Keywords: Dressed photon, silicon, light emitting diode, laser.
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High power Si light emission device using dressed photons

Tadashi Kawazoe ', Motoichi Ohtsu?
! Institute of Advanced Laser Technology, Tokyo Denki University,
5 Senju Asahi-cho, Adachi-ku, Tokyo, 120-8551, Japan, +81-3-5284-5981.
% The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

E-mail: kawazoe@mail.dendai.ac.jp

Abstract: We fabricated Silicon-electro-luminescence devices e.g., a Si-LED and a Si laser. Their optical output powers of them were

more than 1 W (Si-LED) and 10 W (Si-LD).

1. Introduction

Radiative recombination life time of the indirect-
transition-type semiconductor between electrons and
holes is very long. Therefore, a kind of indirect-
transition-type semiconductor Silicon (Si) is not suitable
for a light-emitting diode and a semiconductor laser. In
spite of the disadvantage, the Si light emitter has been
studied due to compatibility with electronics.

In recent years, we have succeeded to demonstrate
several near-infrared Si light emitting devices at room
temperature fabricated using a phonon-assisted process
[1-3]. Their operation principle and fabrication method
are based on the photon-phonon interaction via dressed
photons  [4]. However, some part of emission
mechanisms are still not clear. Especially, the influence
of the black body radiationrelation on the EL spectrum
shuld be discussed. Therefore, I measuer the EL spectra
of the Si-LED at low temperature. As a result, the optical
output power and efficiency were increased with the
decreasing the device temperature drastically. In the
presentation, I discuss the temperature dependence of Si-
LED. Finally, I review the high power Si-LED and Si-
LD.

2. Dressed photon-phonon annealing

The fabrication methods of the Si light emitting device
with the p-n junction have already reported [1-3]. First,
the p-n homojunction was fabricated by the ion-
implanting of a p-dopant (Boron:B) into an n-type Si
substrate which was As-doped n-type Si wafer with an
electrical resistivity of 5 Qecm. The energy of the ion-
implantation for the B doping was 700 keV, and the dose
density was 5x10" cm . Second, in order to optical
activation of the Si p-n junction, the fabricated p-n
homojunction is annealed by Joule heating causing the
foreword injection current. During this annealing process,
the p-n homojunction is irradiated by the infrared light.
This annealing process has been named DPP (dressed
photon-phonon) annealing.

3. Experimental results

Figure 1 shows the EL spectrum of the DPP annealed Si-
LED with the device size of Imm® at 77K. Due to the
temperature dependence of the Si band-gap, the emission
peak coming from the inter-band transition shifts shorter
wavelength. The EL intensity increased drastically with
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Fig.2. (a) A infrared photograph of emitting Si-LED.
(b) Optical output power depending on the injection
current of the Si-Laser.

the decreasing the device temperature. This indicates that
the emission from the Si-LED does not originates from
thermal effect but the electron hole recombination.

Figure 2 (a) shows the infrared photograph of the Si-
LED at the operation power of more than 100mW and
the reference commercial 1.3 um LED at the operation
power of 2mW. This Si EL device is applicable to the Si-
Laser. Figure 2 (b) shows the fabricate Si-laser by DPP
annealing. Its operation output power was reached to
more than 10W.

[1] T. Kawazoe, M. Ohtsu, K. Akahane, and N. Yamamoto,
Appl. Phys. B 107, 659 (2012).

[2] H. Tanaka, T. Kawazoe, M. Ohtsu, K. Akahane, and
N. Yamamoto, Appl. Phys. A 121, 1377 (2015).

[3] J. H. Kim, T. Kawazoe, and M. Ohtsu. Applied
Physics A, 123.9 (2017): 606.

[4] Y. Tanaka, K. Kobayashi, Physica E 40, 297 (2007).
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Logical Fallacy of using the Electric Field

in Non-resonant Near-field Optics

Itsuki Banno*
Graduate Faculty of Interdisciplinary Research
Faculty of Engineering, Uniwversity of Yamanashi,

4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan*

Motoichi Ohtsu
Research Origin for Dressed Photon,
c/o Yokohama Technology Center, NICHIA Corporation,
3-13-19 Moriya-cho Kanagawa-ku, Yokohama-shi, 221-0022, Japan
(Dated: July 29, 2018)

Abstract

We find that the electric field is not a suitable physical quantity to describe the response of
a non-metallic material in the study of non-resonant near-field optics. In practice, we show the
spin-less one-electron two-level system responds differently to longitudinal and transverse electric
fields under the non-resonant condition. This difference originates from the non-relativistic nature
of the system, and should exist in actual many-electron systems. For this type of system, it is a
logical fallacy to use the constitutive equation in terms of the total electric field and the associated
permittivity. Recognizing this fallacy, both experimental and theoretical progress is needed in the

field of non-resonant near-field optics of non-metallic materials.

PACS numbers: 78.67.-n, 78.20.Bh, 41.20.-q, 42.25.Ja

Keywords: non-resonant condition, non-metallic material, optical near field, response function

*Electronic address: banno@yamanashi.ac. jp
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FIG. 1: Target materials under near- and far-field incidences: the former is exposed to the inci-
dent longitudinal and transverse electric fields simultaneously (the left side), whereas the latter is

exposed to only the transverse field (the right side).

Under non-resonant conditions in the optical near field, non-metallic materials cause
various phenomena not observed in conventional optics, such as highly efficient light emis-
sion from indirect-transition-type semiconductors (LED[1, 2| and Laser[2, 3]), chemical
reaction with insufficient photon energy (chemical vapor deposition[4], optical near-field
lithography[5], optical near-field etching[6]), frequency up-conversion|7, 8], non-adiabatic
effect beyond forbidden transition (local energy concentration[9], nano-photonic gate
device[10]), and gigantic magneto-optical rotation of the LED[2, 11, 12]. Theoretically,
dressed photons, namely, the localized electromagnetic field easily coupled with phonons,
were introduced to allow non-adiabatic transitions[13-15].

This Rapid communication focuses on another fundamental role of the non-resonant
condition in near-field optics (NFO) with non-metallic materials. We examine the one-
electron two-level system close to both the light source and the observation point under long
wavelength approximation (LWA), and find it a logical fallacy to regard the total electric field
as causing the response under the non-resonant condition. In contrast, under the resonant
condition or the far-field observation condition, the electric field works as expected. These
findings originate from the non-relativistic nature of the system and should be applicable in
actual optical systems with non-metallic materials. For the readability, calculation details
are given in the last part of this paper.

Suppose a small-scale material is placed in the vicinity of a nanostructure, which functions
as a light source (Fig.1). In such a system, under the NF incidence condition, the target

material is exposed to longitudinal and transverse electric fields simultaneously, whereas



in a system under the far-field incidence condition, the target material is exposed only to
the transverse field, which survives far from the light source. Therefore, the coexistence of
longitudinal and transverse electric fields distinguishes such a system under the NF incidence
condition from that under the far-field incidence condition.

Here, the longitudinal electric field originates from the charge density on the nanostruc-
ture, obeys Coulomb’s law, and has a non-radiative nature to localize around the nanostruc-
ture. On the other hand, the transverse electric field originates from the transverse current
density on the nanostructure, obeys the Ampere-Maxwell law and Faraday’s law, and has
a radiative nature allowing it to propagate far from the light source, accompanied by the
magnetic field. (The longitudinal current density is determined via the charge conservation
law, once the charge density is known, and is not an independent source.) Therefore, the
two incidences coexisting in an NF optical system have distinct properties.

Furthermore, owing to the non-relativistic nature of the system, the scalar and vector
potentials appear in a different manner in the Hamiltonian, which governs the electron re-
sponse, for example, (13) of Calculation details (i) in the last part of this paper. Considering
that the scalar and vector potentials under the Coulomb gauge represent the longitudinal
and transverse electric fields, respectively, one may confirm that the two types of incidences
in NFO cause different responses. Now our question is the following: under what condition
can we observe these differences?

Before proceeding with the analysis, let us first classify the optical systems. The two
systems under near- and far-field incidence conditions in Fig.1 are subdivided into two classes
depending on the near- or far-field observation condition. These four classes are listed in
Table I, together with a summary of the results mentioned below. In particular, the systems
of (I') and (') are the limiting cases of null longitudinal incidence of the systems (I) and
(I), respectively. Thus, in the systems (I') and (II'), the longitudinal response vanishes and
the difference in response may not be observed. In the following, therefore, we focus mainly
on systems (I) and (II), in which longitudinal incidence exists.

Microscopic responses to longitudinal and transverse electric fields. Applying the
linear response theory and the LWA to the electron system of the target material on a small
scale, the induced charge and current densities (as a result of the response), Ap(r,t) and
Aj(r,t), are described as the total derivative with respect to the longitudinal and transverse

electric fields (as the cause of the response), AE®(0,t) and AE®(0,t), where 0 is the



TABLE I: Classification of optical systems by distance from the target material to the light source
and distance from that to the observation point, together with a summary of the results; the

validity of the electric field as the cause of the response.

Near-field observation |Far-field observation
Source:Ap and Aj Source: Aj

Near-field incidence : (I) NF optical system | || (I) NF optical system
AE® + AE® non-resonant / resonant | |(non-resonant / resonant
Validity of the electric field / OK OK / OK

Far-field incidence : (I') NF optical system ||| (Il')conventional optical system
AE® non-resonant / resonant ||| non-resonant / resonant
Validity of the electric field OK / OK OK / OK

representative position in the electron system under the LWA:

Ap(r,t) = /" (r,0) AEL(0,1) + X7V (r,w) AEP(0,1) (1)
Aji(r,t) = ¥ O (r,w) AEY(0,1) + 135 (r,w) AEY(0,1) (2)

where the partial derivative coefficients, x:'(r,w)’s are susceptibilities (response func-

tions), and Einstein’s rule is used for the summation over the vector indices, for example,

X;’““ (r,w) AE ‘; ZXPH e) r,w) AE@ (0,t) . In (2), the time derivatives of the

two types of electric ﬁelds, namely, AE](. (0,%) and AE](-t)(O, t), are regarded as the causes,
instead of the two types of electric fields themselves. The magnetic response vanishes in
the leading order under the LWA ; see Ref.[16]. The derivation of (1) and (2) is given in
Calculation details (i).

For simple evaluation of the susceptibilities in (1) and (2), suppose we have a spinless one-
electron system with two levels, the ground and excited states in the non-perturbed system
with eigenenergies, hwy and hwy, and orbitals, ¢o(r) and ¢;(r), respectively. Those orbitals
are assumed to be bound states expressed by real functions, carry well-defined and distinct
spatial parities (even and odd parities), and form the normalized orthogonal complete set.
The excitation energy is hAw; = hw; — hwy > 0; this finite excitation energy means that

the target is a non-metallic material, such as a molecule, nano-structured semiconductor
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and insulator.
The susceptibilities in (1) and (2) are derived in Calculation details (ii), and those leading

to the induced charge density result in the following:

¢ t Ui 1
XSO, w) =X (1, w) = 2¢? 1 e Do), (3)
where . EhAwl _ excitation energy and (4)
hw photon energy
D; = [d°r o1(r) 73 @o(r). (5)

This means that the responses to the longitudinal and transverse electric fields are common,
such that the induced charge density has a linear relationship with the total electric field,
namely, Ap(r,t) = XT_(Z) D (p, w) (AEJ(-Z)(O,t) + AE’](-t)(O, t))

The susceptibilities leading to the induced current density are not so simple and result

in the following:

& Ow) =L s D Gl — (06 . (6)
) = O ) = T s a0)ale). @

The susceptibility to the transverse electric field, (7), is composed of two terms. The first
term, namely, the resonant term, includes the energy denominator enhanced under the
resonant condition,  ~ 1, as in the susceptibility to the longitudinal electric field, (6). The
second term, namely, the non-resonant term, does not include such a resonance factor.

Equal responses under the resonant condition. Under the condition n ~ 1 in all cases
in Table I, (7) is dominated by the resonant term (the first term) over the non-resonant term

(the second term) and asymptotically equals (6).

O r,w) = 1, w) . 8)

Equation (8) together with (3) reveal the equivalency of the responses to the longitudinal
and transverse electric fields, so that the total electric field is regarded as the cause of the
response in any optical system under the resonant condition listed in Table I .

Equal responses under the far-field observation condition. In the system (II) and
(I') in Table I, the far field to be observed is insensitive to the details of the source but is

determined by the spatial average of the source. Under the LWA, such an average can be



achieved by the spatial average of the susceptibilities. Detailed calculations are shown in

Calculation details (iii); the results are as follows.

XOrw = X Y(rw) =0, 9)

j—(0) (1) J (il 1
Xy (W) =Xy (W) = 0 S ST )

(10)

where the overline represents the spatial average and V is the volume of the target material.
From (9) and (10), one may not observe different responses to the two types of incidences
under the far-field observation condition. The null response represented in (9) is reasonable
because the induced charge density yields the longitudinal electric field, which has a non-
radiative nature and vanishes in the far-field regime.

Unequal responses under the non-resonant, NF incidence, and NF observation
conditions. The different responses claimed in the beginning of this Rapid communication
may be detected only in the system (I) in Table I under the non-resonant condition, which is
just the compliment to the popular optical systems under the resonant condition and/or the
far-field observation condition. In the NF optical system (I) with a non-metallic material un-
der the non-resonant condition, the total electric field is not the cause of the response; there-
fore, the response may not be described by the macroscopic constitutive equation (MCE),
namely, the linear relationship between the polarization and ”electric field” via permittivity,
and the microscopic susceptibilities are essential to treat separately the longitudinal and
transverse incidences.

In NFO, the response to the longitudinal electric field is discussed in Chap. 5 in Ref.[16]
and Chap. 9 in Ref.[18]. The present work is a further comparison of the two responses,
considering the non-resonant condition.

The present model is very simple and the responses may be modified in a many-electron
system or a low-symmetry system. However, the difference in the responses to the two
types of electric fields originates in the non-relativistic nature of the system (as stated in the
beginning of this Rapid communication), and should survive in actual NF optical systems
with non-metallic materials (the materials with finite excitation energy). Actually, there is
no reason for equating the two responses in the many-electron and low-symmetry systems.
Therefore, one may infer a guiding principle to highlight NF optical phenomena: under the
non-resonant condition and simultaneous NF-incident and NF-observation conditions, non-

metallic materials bring about NF-specific optical phenomena that may not be described
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by the MCE in terms of the electric field and the permittivity. Some of the experiments
mentioned in the beginning of this paper were performed under such conditions; thus, we
will analyze them in detail in future investigation.

A remark on applying the finite differential time domain (FDTD) method to an
NF optical system. The MCE in terms of the permittivity has been widely employed
to calculate the optical near field in the FDTD method[17]. One may notice that the
permittivity in the FDTD method carries a simple spatial dependence and leads to some
quantitative error. Actually, the microscopic susceptibilities, for example, (3), (6), and (7),
have rippling spatial distributions originating from the orbitals.

In the case of the NF optical system (I) in Table I with a non-metallic material under

the non-resonant condition, the situation is more serious because the concept electric field
is not available, such that it is a logical fallacy to use the MCE. Thus, a novel simulation
method is necessary.
NFO and many-electron problem. Why has the comparison of responses to the two
types of electric fields not been addressed in NF optical theory? First, in the long history of
optics, the NF optical system (I) in Table I under a non-resonant condition has been out of
focus. Such a system could not be resolved until the technical difficulty of NF observation was
overcome. Additionally, resonance phenomena continue to attract attention. Furthermore,
even in NFO, there has been less emphasis on non-metallic materials, as opposed to metallic
materials, which are essential for plasmonics.

The second reason is that the ordinary Hamiltonian for a many-electron system does
not include the longitudinal electric field, which is rewritten to the two-body Coulomb
interaction and eliminated. With this Hamiltonian, the response to the longitudinal electric
field incidence accompanies the Coulomb interaction, and is difficult to analyze. Therefore,
NFO is inevitably related to the many-electron problem; however, this has not been well
recognized for a long time. This study considered a one-electron system, avoiding the many-
electron problem. In future studies, the present scenario will be extended to a many-electron
system and nonlinear response, overcoming the many-electron problem, and applying the
findings to various phenomena mentioned in the beginning of this Rapid communication.

To the best of our knowledge, the present near-field optical system with non-metallic
material under the non-resonant condition is the third example that cannot be described

in terms of electric field and/or magnetic field, after the superconductor system with the



Meissner effect and the electron system with the Aharonov-Bohm effect. The diversity of
non-metallic materials including semiconductors, dielectrics, and magnetic materials has
been utilized in conventional optics. We believe that focusing on non-metallic materials in
NFO promotes further development both conceptually and technically.

Calculation details. Here we provide the calculation details, including the derivation of

the unfamiliar relationship (28) between two types of dipole transition matrix elements.

(i) Derivation of the microscopic constitutive equations, (1) and (2). The incident scalar

and vector potentials, A¢(r,t) and AA;(r,t), are assumed to be monochromatic with the

angular momentum w, and are expressed using the Coulomb gauge and LWA, as follows:

A(r,t) = Ap(r) coswt = (Ap(0) — AEY(0) - r) coswt, (11)
1
AA(r,t) = AA(r) sin(wt + &) = ——AED(0) sin(wt + £) , (12)
w
where and ¢ is the phase difference between the two incident potentials. The nanostructure

is assumed to be a robust light source, which is not affected by the target material, and the

electromagnetic field is assumed to be a classical field.

Using a spinless one-electron system, let us evaluate the induced charge and current
densities caused by the coexisting incidences of the scalar and vector potentials. The total

Hamiltonian is as follows:

= o (G~ ex0.0) (5505 = odx@).0) + aolx(v,0). (13)

where ¢ is time, x(t) is the position of the electron, and (= —e), m are the electron charge

and mass, respectively. The perturbation Hamiltonian is given by
/d?’r ([)(r,t)A¢(r,t) — j’i(r,t)AAi(r,t)> , (14)

where p(r,t), j;(r, ) are the Heisenberg operators of the charge and current densities defined

plr. ) = 45°(r — x(1). (19
i) = 52 (5.0 a0 ) 8 = xte) + 6 = x) (5.7~ ad(x.0)) |

(16)



The linear response theory leads to the operators of the induced charge and current densities,
as follows:
t
. L., .
Ap(r, 1) :/dﬁ /d37"1 {z_h (PO, t), O ry, t1)] Ag(ry, 1)
1 ~(0) ~(0)
i [P (r,t), J, (1'17151)] AA; (re,t1) ¢ (17)
“ t 1 “ ~
Aji(r,t) :/dtl d*ry {ﬁi |:.7i(0)(r7t)7 p(O)(rlatl):| Ap(ry, )
]- “ o ~
—— 100, V@, 0)] A4, (rl,tl)} — L0 ) AA(r, 1)
ih m
(18)

©) and 5(0) are the charge and current density operators, respectively, in the non-

where p
perturbed system. The last term in (18) originates from the non-relativistic nature of the

system and is needed to maintain the charge conservation law.

Evaluating the expectation value using the ground state and substituting (11) and (12)
leads to (1) and (2), in which the causes of the responses are the two types of electric fields

and their temporal derivatives, defined as

(©) — @) (t) — (t)

AE;(0,t) = AE”(0)coswt, AE;’(0,t)= AE;”(0)cos(wt+¢), (19)
" ) i ) o

A@RQQEEA@NQQ, A@%mwzaA@%mw. (20)

In the above, no magnetic response appears because it is the higher order in the LWA[16,
19]. Cho derived a Taylor series of the non-local response function[20] under the LWA, and
assigned the electric permittivity and magnetic permeability in the MCE as the term of
order O(ka)® (the leading order) and O(ka)?, respectively, where ka < 1, 27 /k is the light

wavelength, and a is the representative size of the material.

Furthermore, he pointed out that the MCE is irrational because the separability of the
electric and magnetic responses and the term of order O(ka)' appears in a chiral symmetric
system, including a NF optical system with a low-symmetric nanostructure. The present
work is concerned with another type of irrationality, which appears in the electric response

(the leading order from the viewpoint of Cho) in NFO under a non-resonant condition.

(ii) Derivation of the expressions for susceptibilities, (3), (6) and (7).

To obtain these formulas using the two-level model, we take the expectation values of (17)
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and (18) using the ground state, ¢o(r), and insert the projection operator [ the left side of
the second equation in (21)], assuming that the two orbitals are real functions, and form the

normalized orthogonal complete set:
JEr en@ene) =0 Y eneenl) = e 1), 1)
where @, (r) satisfies,
HO(r) = hwop om(r), (m=0,1). (22)

Having real orbitals infers even temporal parity, such that there is a null magnetic field
in the non-perturbed system or null vector potential in the non-perturbed Hamiltonian.
Furthermore, we use the well-known linear relationship between the two types of dipole

transition matrix elements,

Ci = /d?’?” (8,@1(1")900(1') — gol(r)@gpo(r)) = Zh—gnhAwl Dz . (23)

Equation (23) is derived from the matrix element of the Heisenberg equation for dipole

charge density:

| @
>
>
C
—
:1
~
S—
Il

1
i_ 7"]',5(0) (I‘, t) s H(O) 5 (24)

f0)y

using pV(r,t) = e "7 pO(r,0)e* @, the projection operator, (21) and (22).

(iii) Derivation of the spatial average of the susceptibilities, (9) and (10). These following
replacements in (3), (6) and (7) lead to (9) and (10):

ane) — 3 [Erame) =0, (25)
Bpr(r)enlr) — aE0nl) — 5 [ErBipE)enlr) - p @) = 56 (20
aoltealr) 3 [ =5 (27)

To derive (10), we additionally use the trade-off relationship between the two types of dipole

transition matrix elements,

10



This is effective in the two-level system with well-defined parity and derived from the
quantum-mechanical commutation relationship:
h h h
[Ti y —,8j] = Zhézj s i.e., T; <—,(9j v ) + —,(9j (Tz‘ ce ) = zh5w et (29)
i —1i

]

Inserting the projection operator between r; and %@, and eliminating the null integrals
caused by mismatched parity result in (28). From (23) and (28), D; and C; are specified as

1 h
yp I — 30
CZ‘ vV 2m hAw1 ( )

(We do not use (30) in this paper.)
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Abstract

Mesh-electrode type and flip-chip type silicon light-emitting diodes were fabricated by using dressed
photons. Their emission spectral profiles showed several peaks originating from phonons in a dressed-
photon—phonon, from which the existence of a photon breeding phenomenon was confirmed. The highest
optical output power emitted from these devices was 2 W at a substrate temperature of 77 K. The highest

optical power density from the flip-chip type was as high as eight-times that from the mesh-electrode type.
1 Introduction

There is a long-held belief in optical science and technology that crystalline silicon (Si) is
not suitable for use in light-emitting devices. The reason for this is that it is an indirect-
transition type semiconductor, in which the momentum of an electron at the bottom of
the conduction band and that of a hole at the top of the valence band are different from
each other. Therefore, for electron—hole recombination, a phonon is required to satisfy
the momentum conservation law. However, the probability of the electron—phonon
interaction is low, resulting in a low interband transition probability.

In order to realize light-emitting devices using Si, porous Si [1], a super-lattice
structure of Si and SiOs [2,3], Si nanoprecipitates in SiO2 [4], Exr-doped Si [5], and Si-Ge
[6] have been employed. However, in these examples, the optical output powers were very
low since the Si still worked as an indirect-transition type semiconductor.

In contrast to these examples, the authors have previously realized novel light-
emitting diodes (LEDs), lasers, and related light-emitting and -detecting devices by using
Si bulk crystal and dressed photons (DPs) [7]. A DP is a novel quantum field created as
a result of the interaction between a photon and an electron—hole pair in a nanometric
space. A dressed-photon—phonon (DDP), created as a result of the interaction between
the DP and a phonon, has also been used [8]. The DPP was created in an Si crystal,
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resulting in efficient light emission by the momentum exchange between a multi-mode
coherent phonon in the DPP and an electron in the conduction band of the Si.

In the present study, we improved on a previously fabricated infrared Si-LED
(wavelength: 1.3 um) [9] to achieve higher current injection and more efficient heat
dissipation. This paper reports the fabrication method and light-emission characteristics
of the improved high-power Si-LEDs.

2 Fabrication

The first part of this section reviews the principles of fabrication based on a novel DPP-
assisted annealing method. The second part is devoted to the procedures for fabricating
devices of a mesh-electrode type and a flip-chip type for allowing higher current injection

and more efficient heat dissipation.
2.1 Principles

To fabricate an LED, as the first step, the surface of an n-type Si crystal is doped with
boron (B) atoms to transform it to a p-type layer, thereby forming a pn-homojunction. As
the second step, the crystal is annealed using a novel method named DPP-assisted
annealing [7]. In this method, by means of current injection, the Si crystal is heated by
Joule energy to diffuse the B atoms. During this heating, the Si crystal surface is
irradiated with light to create DPPs at the B atoms. The electrons injected into the
conduction band exchange momenta with the phonons in the created DPPs, thus
recombining with positive holes and emitting light. This emission process is stimulated
emission because 1t is triggered by light irradiation. The emitted light propagates outside
the Si crystal, which means that a part of the Joule energy for heating is dissipated out
in the form of optical energy. As a result, the diffusion rate of the B atoms decreases
locally. By a balance between heating by the Joule energy and cooling by the optical
energy dissipation, the spatial distribution of B atoms varies autonomously and reaches
a stationary state.

Such a stationary distribution of B atoms can be the optimum distribution for
spontaneous emission because its probability is proportional to the probability of the
stimulated emission above. From high-resolution analysis of the B atom distribution, it
was confirmed that two B atoms formed a pair whose length was three-times the crystal
lattice constant of Si. It was also confirmed that the pair was oriented perpendicular to

the propagation direction and to the polarization direction of the irradiated light [10].



2.2 Procedures

Sb-doped n-type Si crystal was used. In order to transform its surface to an n-type layer,
the Si crystal was doped with B atoms by a two-step ion implantation method, where the
doping energies were 700 keV and 10 keV.

2.2.1 Mesh-electrode type LED

Figure 1 shows a photographic profile of the fabricated device: A homogeneously flat film
of Cr/Al/Au (thicknesses: 30/200/300 nm) was coated on the n-type surface of the Si
crystal described above to serve as a cathode. A mesh film of Cr/Au (thicknesses: 30/300
nm) was coated on the p-type surface to serve as an anode. The crystal was diced to form
devices with areal sizes of 1 mmx1 mm, and these devices were bonded on a PCB
substrate made of high-thermal-conductivity AIN. The diameters of eight electric wires
were increased from the previously employed 25 um [9] to 45 um to avoid damage to the

electric wires and electrodes during high current injection.

0.5mm

Fig. 1 Photographic profile of the fabricated mesh-electrode type LED.

The conditions for the DPP-assisted annealing were: (1) A substrate temperature,
of 285 K; (2) irradiation light with a wavelength of 1342 nm and a power of 2.0 W; (3)
injected current having a triangular waveform (50 s period) and a peak current of 1.3 A
(current density 1.3 A/mm?2); and (4) an annealing time of 2 hours.

Figure 2 shows the relation between the applied voltage and injected current in
the fabricated Si-LED. A drastic decrease in the electrical resistance can be seen after

the DPP-assisted annealing, which is evidence of successful annealing.
2.2.2 Flip-chip type LED

To achieve higher injected current density than that of the mesh-electrode type, a flip-

chip type LED was fabricated. First, its areal size was decreased. Second, a larger-

diameter electric wire was used. Third, the flip-chip structure was employed, in which
3



the p-type layer was contacted to the PCB substrate for efficient heat dissipation.
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Fig. 2 Relation between the applied voltage and injected current.

Broken and solid curves are the results acquired before and after the DPP-assisted annealing, respectively.

Figure 3 shows a photographic profile of the fabricated device: A homogeneously
flat film of Cr/Au/Ti/Pt/Au (thicknesses: 3/300/100/300/500 nm) was coated on the p-type
surface of the Si crystal to serve as an anode. A patterned film of Cr/Au (thicknesses:
10/500 nm) was coated on the n-type surface as a cathode. The crystal was diced to form
devices with areal sizes of 0.35 mm x0.35 mm, which was smaller than that of the mesh-
electrode type described in Subsection 2.2.1. This is equivalent to the size of commercially
available devices made by using a conventional direct-transition type semiconductor. The
diced device was bonded on a PCB substrate made of AIN. A single electric wire with a
diameter as large as 60 um was used to realize high-density current injection without
any electrical damage.

W i

Fig. 3 Photographic profile of the fabricated flip-chip type LED.

The conditions for the DPP-assisted annealing were: (1) A substrate temperature
of 289 K; (2) irradiation light with a wavelength of 1342 nm and a power of 0.24 W (areal
power density: 1.9 W/mm?); (3) injected current with a triangular waveform (10 s period)
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and a peak current of 0.16 A (current density: 1.3 A/mm?); and (4) an annealing time of
7.2 hours.

3 Light emission characteristics

With conventional current injection, the fabricated device worked as a Si-LED: The
electrons injected into the conduction band exchanged momenta with phonons even
though the probability of this exchange was extremely low. As a result, they recombined
with a positive hole, resulting in spontaneous light emission. Since this light created
DPPs at the B atoms, phonons in the DPP could exchange momenta with other electrons,
resulting in further light emission. By repeating this process, the emitted light intensity

increased and reached a stationary state to establish steady LED operation.

3.1 Mesh-electrode type LED

Wavelength (um)
2.0 15 1.0

6.0 ] ;
Eg i Ephonon

Spectral power density (W/eV)

0.6 0.8 1.0 1.2

Photon energy (eV)

Fig. 4 Spectral profile of the emitted light at substrate temperature of 77 K.

Figure 4 shows the spectral profile of the emitted light, which was acquired by cooling

the substrate to 77 K and injecting a current of 2.0 A. In this figure, E, represents the

bandgap energy of the Si crystal at 77 K. This figure shows that the spectral profile has

several peaks at E,—nE, .., where n is an integer and E is the phonon energy.

phonon



The spectral peak at E, -3E . corresponds to the photon energy of the light irradiated

during the DPP-assisted annealing [10]. This correspondence has been named photon
breeding [11], which originates from the autonomous formation of pairs of B atoms by
DPP-assisted annealing, as was described in Subsection 2.1. Three phonons contribute

to the light emission at E;, —3E ., because the length of the B atom pair is three-times

the crystal lattice constant of Si. This figure also shows the higher harmonics of the

phonon contributions, i.e., E, -6E ..

and E, —-9E

phonon *

Figure 5 shows relations between the injected current (1) and the optical output
power (P ) of the upward-emitted light from the upper surface of the Si-LED, which were
acquired at several substrate temperatures. It shows that P is proportional to 1% in
the lower current region, whereas it is proportional to 1* in the higher current region.

The origin of the |%-relation has been identified as Auger scattering [9]. The 1*-relation
originated in amplification by the stimulated emission.
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Fig. 5 Relations between the injection current and the optical output power.

Substrate temperatures were 77 K (A), 273 K (B), 290 K (C), and 293 K (D).

By defining the current at the boundary between the region of the | >~ and |-
relations as the threshold 1, , it is found that its value was lower at lower substrate

temperatures. For example, it was 580 mA at 77 K. This means that the threshold current
density was 0.58 A/mm2, which is close to the threshold current density (0.20—0.35



A/mm?) of the Si-laser fabricated by the DPP-assisted annealing [12]. The highest optical

output power in Fig. 5 was 2 W with an injection current of 2 A and a substrate
temperature of 77 K. This value is as high as 103-times that of a commercially available
LED".

The image A in Fig.6 shows the photograph of the light spot emitted from the
presently fabricated Si-LED. The image B is from the commercially available LED above®.
By comparing these images, a very high optical output power of the present Si-LED can
be recognized.

B A

Fig. 6 Photographs of light spots.
A and B are the spots emitted from the Si-LED fabricated in the present study and from a commercially
available LED, respectively.

*For example, the optical output power of a Hamamatsu Photonics model LL12509-0155K, which is made

of a direct-transition type semiconductor (InGaAs), is 2 mW. The peak emission wavelength is 1.55 pm.

3.2 Flip-chip type LED

Figure 7(a) shows the spectral profile of the light emitted from the flip-chip type LED,
which was acquired by cooling the substrate to 77 K and by injecting a current of 3.21 A.
Figure 7(b) shows the profile at a substrate temperature of 283 K and an injection current

of 2.45 A. These figures also clearly demonstrate spectral peaks at E,-3E

phonon »

E,-6E

g phonon

and E, -9E as was the case in Fig. 4.

phonon

Figure 8 shows relations between | and P of the upward-emitted light from
the upper surface of the Si-LED, which were acquired at several substrate temperatures.
The highest optical output power in this figure was as high as 2 W at 3 A-injection current



and at a 77 K-substrate temperature. This demonstrates an extremely high optical
output power density was achieved, as high as eight-times that of the mesh-electrode
type LED described in Subsection 3.1.
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Fig. 7 Spectral profile of the light emitted from the flip-chip type LED.
(a),(b) The substrate temperatures were 77 K and 283 K, respectively.

It can be seen that the relations between | and P showed more complicated
profiles than those in Fig. 5: In the low-current region [al, P increased slowly with
increasing |, whereas it increased rapidly in the high-current region [c]. The unique
feature is that P decreased with increasing | in the intermediate region [b]. Figures
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9(a)-(c) show photographs of the upward-emitted light spots in the regions [al-[cl,
respectively. Among them, Fig. 9(b) shows that the light was emitted not only in the
upward direction but also in the side direction of the device. This side-emission was
attributed to the decrease in the acquired value of P in region [b]. It should be noted
that this side-emission was due to stimulated emission, which suggests the possibility of

super-luminescent diode and laser operation.
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Fig.8 Relations between the injection current and the optical output power of the upward-emitted light

from the surface of the Si-LED.
Substrate temperatures were 77 K (A), 195 K (B), 255 K (C), and 283 K (D).

(a) (b) ()

Fig.9 Photographs of the upward-emitted light spots.

(a), (b), (c) are images obtained in regions [al, [b], and [c] in Fig. 8, respectively.

As was the case in Fig. 5, the threshold 1, can be defined as the current at the

boundary between regions [b] and [c]. Figure 10 shows its dependence on the substrate

temperature T . The solid line, fitted to the experimental results of the closed circles,

was expressed as |, =1,exp(T/T,) . The characteristic temperature T, in this

9



expression was 63 K, which corresponded to the energy 3E of three phonons in the

phonon

DPP. This means that the electron—hole pair was confined in the potential well formed
by three phonons. This value of T, was as high as that of a conventional laser fabricated
by a direct-transition type semiconductor (InGaAsP), lasing at a wavelength of 1.3 um
[13], which suggests that future progress in the present study can realize highly reliable
light-emitting devices using crystalline Si.
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Fig. 10 Relation between the substrate temperature and the threshold current.

4 Summary

Mesh-electrode type and flip-chip type Si-LEDs were fabricated to realize higher-density
current injection and more efficient heat dissipation. Their emission spectral profiles
showed several peaks that originated from phonons in the DPP, by which a photon
breeding phenomenon was confirmed. Their highest optical output powers were 2 W at
injection currents of 2 A and 3 A, respectively, and a substrate temperature of 77 K. The
highest optical power density from the flip-chip type was as high as eight-times that from
the mesh-electrode type. In the case of the flip-chip type, the characteristic temperature
of the threshold current for the rapid increase in the optical output power was 65 K,
which corresponded to the energy of three phonons in the DPP.
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guided by dressed photons
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Abstract

By noting that the dressed photon (DP) is a quantum field whose energy—momentum relation deviates
from the mass-shell, novel theoretical studies of so-called off-shell science have been launched. This
article reviews recent progress in these studies. After reviewing the characteristics of the DP as an off-
shell quantum field, theories having a physical basis are introduced. These theories are an electromagnetic
response theory and a theory based on spatio-temporal vortex hydrodynamics. Next, theories having a
mathematical basis are introduced, and these can serve as helpful tools for gaining a deep understanding
of the concepts of the physics-based theories above. These theories are a quantum probability theory and
a quantum walk model. As a further helpful tool, a quantum measurement theory is introduced. A theory
based on micro—macro duality is demonstrated, which serves as the foundation to embark on a stuy of

off-shell science. Correlations among the theories reviewed here are also shown.

1 Introduction

Studies on dressed photons (DPs) have found that the DP is a quantum field created by
light—matter interaction in a nanometric space [1]. Some of its unique characteristics,
outline below, have been demonstrated by experimental studies”:

[a] The DP is a field composed of photons and electrons (or excitons). It is created and
localized at the boundary or at the singular point of a nanometric material, i.e., on the
material surface or at an impurity atom in the material.

[b] The energy and momentum of the DP range widely.

[c] The DP is a quantum field off the mass-shell (“off-shell quantum field” for short).
[d] Electrons and excitons can be excited and de-excited by the DP even under non-
resonant condition.

[e] The DP energy is exchanged and transferred between nano-materials when they are
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located in the close proximity to each other.

[f] The DP field is disturbed when it is measured by inserting a probe into the field.

[g] The DP is transferred in an autonomous manner between the nano-materials.

[h] The spatial distribution of DPs on a material surface has a hierarchical structure.
Characteristics [a]-[h] above have been applied to the invention of novel optical

logic gate devices, nano-fabrication technology, and energy conversion technology [2].

They have also been applied to the invention of novel high-power lasers and light-

emitting diodes using crystalline Si, even though Si is an indirect-transition-type

semiconductor [3]. These applications demonstrate the advent of a revolutionary generic

technology that could never have been realized as long as conventional light (free

photons) is used (Fig.1) [4].

e

1 DP davica Optical router system [
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i

[ Silicon LEDs and lasers

Optical pulse shape
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/ Optical security system |
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-

Laser mirror, HDD,
Siwaveguide array  X-ray zone plate optical disk,

_| Lithography system | Surface polishing system

Fig.1 Generic technology that has emerged by applying the unique characteristics of the DP [4].

The advent of this technology suggests that the study of the DP has entered a
new era in which the construction of advanced theories will be indispensable for

accelerating technological progress.

(*) Characteristic [a] can be considered as the origin of characteristics [b] and [e]. Furthermore,
characteristic [b] can be considered as the origin of characteristics [c] and [d], and characteristic [e] that

of characteristic [f].




2 The dressed photon as an off-shell quantum field

Characteristics [a]—[h] in Section 1 cannot be described by conventional optical theories.
This is because these theories have treated only a photon in vacuum (free photon) and
in a macroscopic material, whose dispersion relation is on the mass-shell (“on-shell”,
for short). It has been popularly known that massless particles with non-zero spin, such
as free photons, cannot be localized in space, in the sense that the position operator
cannot be well-defined [5, 6]. However, it turns out to be natural to consider localized
photons when the effective mass of photons, created by the light-matter interactions, is
taken into account. Especially in the case of nano-materials, space—time localization and
energy—momentum fluctuation provide brand new aspects of light. A photon in such a
context is called a DP [1].

For a theoretical definition of the DP, the “off-shell” nature of the interaction
has to be considered. That is, the DP is an off-shell quantum field that conspicuously
deviates from the mass-shell in the dispersion relation (Fig. 2). As has been well known,
quantum field theories cannot be formulated without off-shell entities. In other words,
the traditional particle description has failed to treat the composite system of quantum
fields. Hence, DPs must be entities that are very different from Einstein’s quanta of light,
or free photons.

AE~At2hr AE: large

r 3
At:  short
~ Virtual photon l

Energy

-

» Ap: large —lAp Ax > h
Ak > k)
v Ax: small

Momentum (Ax K 1)
Localized photon |

Fig.2 The dispersion relation of the electromagnetic field on-shell or off-shell.

E,t, p, X, k,and A are energy, time, momentum, position, wave-number, and wavelength,

respectively. 7 is Planck ‘s constant h divided by 27 .

Here, a fundamental question arises: How can the DP be described as an
individual entity? As long as one sticks to the notion of individual entities as irreducible
on-shell particles, it is impossible to treat the DP as an individual entity. However, a

3



more general perspective, advocated by Ojima [7], has shown that macroscopic physical
phenomena can emerge out of a condensation of microscopic off-shell entities.

By following this perspective, a basic idea can be proposed: In the interaction
between light and a nano-material, certain families of modes of the composite system
will behave as individuals. This behavior suggests that the DP is the quantum field of a
composite system in which an electromagnetic field and an electron (or an exciton)
interact in a nanometric space. Furthermore, it is a virtual field localized in a nanometric
space within a short time duration. Thus, the DP is a quantum field whose nature is
incompatible with that of an on-shell photon. This means that conventional optical
theories are incapable of giving a systematic description of characteristics [a]-[h] above.
Fortunately, however, as will be reviewed in Sections 3 and 4, novel theoretical studies
have been commenced in order to draw a precise theoretical picture of the DP to provide
a systematic description of these characteristics.

Several hints have been found to construct such novel theories by noting that
the virtual photon plays an essential role in the electromagnetic Coulomb interactions.
They are:

[A] The longitudinal mode of an electromagnetic field (the longitudinal wave)

contributes to the Coulomb interaction [8].

[B] The field interaction accompanies the 4-momentum [9].

[C] The spacelike field is not spatially localized because it behaves as a stable wave.

However, it becomes unstable and can localize if it interacts with a timelike field [10].
By referring to these hints, novel theoretical studies relying on physical as well

as mathematical bases have commenced [11].

3 Theories having a physical basis

This section reviews two examples of novel theories constructed on a physical basis.
One is a response theory based on classical electromagnetics. The other is a theory based

on spatio-temporal vortex hydrodynamics, supported by relativity theory.

3.1 Electromagnetic response theory

A novel response theory was constructed using an electromagnetic response function.
As shown by Fig. 3, a nano-particle 1 (NP1) serves as a light source. It corresponds to a
fiber probe that creates a DP on its tip. A nano-particle 2 (NP2) is illuminated by the
light emitted from NP1. Since NP2 is placed in close proximity to NP1 in the case of

4



Fig.3(a) (d < A: d isthe separation between NP1 and NP2, and A is the wavelength
of the light), the electron in NP2 responds not only to the transverse electric field
(E(™™)Y) of the light but also to its longitudinal electric field ( E"™).

NP1

e .

NP1 J/
E(trans) 2 ' I E(trans) T da>» 2

’ ,,/?d«a

E(lon;

NP2 ‘ -

NP2

(a) (b)

Fig.3 Schematic explanation of the theoretical model.

(a) Near-field condition. (b) Far-field condition.

The field E“®™ is created by a transverse current in NP1. It is a radiative field
that follows the Ampére-Maxwell law. It has been popularly known that conventional
optical phenomena occur and are observed by this field even under far-field condition
(d > A: Fig.3(b)). On the other hand, E"" is a non-radiative field, which is created
by an electric charge in NP1 and follows Coulomb’s law. It causes unique optical
phenomena to occur only under the near-field condition (d < A : (Fig.3(a)).

The Schrodinger equation was used to describe the electronic state in NP2 under
light illumination, for which both the scalar (¢ ) and vector ( A) potentials, originated
respectively from E®” and E®™ | were adopted to represent the light-matter
interaction. The potentials ¢ and A appeared with the linear and quadratic forms,
respectively, in the relevant equations. The difference in their forms originated from the
non-relativistic nature of the system under study.

For describing the phenomena that originated from the DP, the present theory
treats ¢ equivalently with A. It should be noted here that the conventional response
theories have eliminated ¢ by transforming it to the two-body Coulomb interaction
potential. Being different from them, the present theory treats not only A but also ¢
as the “cause” of the response. For this treatment, a semiclassical response theory was
constructed to derive the electric charge density and the electric current density, induced
as the “response” of the electron in NP2. For representing the response, the single

susceptibility was calculated by a method based on density functional theory.
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From the time-integral of the commutator in the expressions for the electric
charge and current densities in the NP2 (egs. (6.17) and (6.18) in ref. [12], respectively),
variables representing the energies appeared in the denominators of the derived fractions.
These fractions denote the resonance phenomena because they diverge to infinity by
tuning the photon energy. However, eq. (6.18) in ref. [12] also has non-resonant fractions
that originated from the non-relativistic nature of the system. Since ¢ and A are
respectively represented by E™" and E®" the susceptibility can be derived from
the proportional constants between the induced electric charge density (current density)
and E(V (E®™),

In the case of the electric dipole-allowed transition between the two-energy
levels of the electron, the cause of the response can be attributed to the total electric field
E (= (M 4 E®))  when the system is under the far-field and resonant conditions.
That is, the cause can be represented by E®* and the electric permittivity. However,
in the case of phenomena that originated from the DP, especially the one that occurred
under the non-resonant condition, it should be noted that E®™®) cannot serve as the
cause of the response. This means that neither the constitutive equation using electric
permittivity and magnetic permeability nor numerical simulation using the finite-domain
and time-domain (FDTD) method are valid.

In the case of the electric dipole-forbidden transition, on the other hand, only
the non-resonant term contributes. It was confirmed that this term led to an equation that
is equivalent to the London constitutive equation for the Meissner effect. Thus, in this
case, A serves as the cause of the response.

NP2 was assumed to be a nonmetallic material in the present theoretical study,
and this has also been employed in a series of experimental studies on the DP [2,3]. A
metallic material was not employed here because it is unsuitable for creating the DP.
This is because the temporal coherence of the incident electromagnetic field is lost
within a very short time due to the very short transverse relaxation time of an electron
in the metal.

The constructed theory successfully described the excitation and de-excitation
of electrons or excitons, the contribution of phonons, and the magnetic interactions
found in experimental studies of the DP under the non-resonant condition of light—matter
interaction. The main derived result is that: E™" caused a large electronic response.
Furthermore, the non-resonant term of the electric susceptibility was much larger than
the resonant term [12], which explains characteristics [d] and [e].

As is understood from the discussions above, E®®) fajled to describe the
response of NP2 in the case where the conditions of non-resonance and near-field
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illumination/measurement are simultaneously met. This failure was never found in
previous studies on the DP because only A was employed as the cause. The present
theory succeeded in specifying that ¢ is indispensable for describing the bound state
of the electron for which the quantum many-electron effect (i.e., an exchange/correlation
interaction) was taken into account.

In future studies, more advanced response theories are expected to
systematically explain characteristic [e].

3.2 Theory based on spatio-temporal vortex hydrodynamics

Characteristic [b] suggests that the inequality E<Cp holds (E, C, and p are the
energy, speed, and momentum of an electromagnetic field, respectively), which means
that the field can exist in the spacelike domain of the Minkowski space. In addition, [B]
in Section 2 suggests that a timelike-support and spacelike-support of the 4-momenta
are required to describe the interacting fields. By referring to these suggestions and also
to [C] in Section 2, it can be conjectured that the DP can be created by the interaction
between the fields in the timelike and the spacelike domains.

Prompted by this conjecture, a novel theory has been constructed by focusing
on the similarity in formulation between vortex hydrodynamics and electromagnetics
[13]. For this construction, it was also noted that the contribution of the spacelike
momenta was indispensable for the interaction between the quantum fields to occur [9].

Conventional classical theories have claimed that the Coulomb mode played a
principal role in the electromagnetic interaction and that the longitudinal wave was a
physically existing mode [8, 14-16] (refer also to [A] in Section 2)". In contrast,
conventional theories of quantum electrodynamics have excluded the longitudinal wave
as a “non-physical mode” even though it had a close relation with the Coulomb mode.
Instead, they have introduced the exchange of virtual photons into the theoretical model
for describing the electromagnetic interaction. This contrast suggests that a rift exists
between the classical and quantum explanations above. This problem should be solved
to draw a consistent physical picture of the DP that exists in an intermediate area between
the classical and quantum worlds.

(*) This claim is consistent with the discussions in Section 3.1, where it was pointed out that the

longitudinal electric field E (lon) (and also @) plays an essential role in the phenomena that originated

from the DP.




It should be pointed out that the theory of micro-macro duality (Subsection 4.2
(2)) has already explained how to connect the classical and quantum worlds, by which a
clue to solve the problem above can be found. The principal advantage of this theory is
the capability of analyzing versatile structures of quantum fields with infinite degrees of
freedom. This theory has demonstrated that the two worlds above coexist in the sense
that the classical-quantum correspondence is mathematically guaranteed. The main
purpose of the present subsection is to describe the electromagnetic interaction by
adopting the micro—macro duality theory. It is expected that this description can
systematically demonstrate the contributions of the longitudinal wave and the spacelike
4-momenta for drawing a physical picture of the DP.

For this demonstration, a novel mathematical expression, called the Clebsch
representation, is adopted for the 4-vector potential of the electromagnetic field. The

Clebsch representation is a method involving the use of Clebsch variables for

representing the velocity vector field v, that is introduced to analyze the Hamiltonian

of a barotropic fluid. It should be noted here that the mathematical structure (eq. (1a))
of the 4-vector potential A of the skew-symmetric electromagnetic field is similar to

that of the equation of motion (eq. 1(b)) for a barotropic fluid based on relativity theory:

Fyvav¢ =O’ (la)

w N =0, (1b)

nv
where F, denotes the skew-symmetric transverse electromagnetic field, and o, is
the skew-symmetric vorticity defined by the rotation of the velocity field v". This

similarity is due to the fact that the scalar field ¢(= 0, AV) satisfies the wave equation

and its gradient vector O0,¢ 1is parallel to the propagation direction of the wave (normal

to the electric and magnetic fields).

Next, using the two-variable (4 and ¢ ) Clebsch representation (U, = 10 ,,¢),

the v” ineq. (1b) is regarded as the vector potential of the electromagnetic field. Here,

U, denotes the Clebsch parameterized 4-vector potential that is parallel to the 4-

Poynting vector. Since ,, in eq. (Ib) can also be regarded as denoting the



electromagnetic field, it is represented by the skew-symmetric field
S, =0U,-0U,. ()

Furthermore, the following two equations are derived, whose mathematical structure is
similar to that of the Maxwell equation:

004" —Kk A" =0, (3a)
0"10,4=0. (3b)
Here, egs. 3(a) and (b) indicate that A follows a spatial Klein-Gordon (KG) equation,

and that the two vectors (0"Aand 0, ¢ ) are normal to each other, respectively. Using

the vector U, these equations can be rewritten as
00U~k U* =0. @)
The field, represented by U ,, can be called the Clebsch dual (CD) field by comparison
with A“ that satisfies the Proca equation
00, A +x A =0. (5)
The energy-momentum tensor T, for S* is expressed as
T, =-5,57=pCLC", (6)
where p=-0“40,4 denotes a spacelike vector, being proportional to the spacelike

momentum. C, =0, represents a longitudinal wave. The middle part of eq. (6) has
the same form as that of the conventional electromagnetic field. The right-hand side is
given by the product of p and C,C", which shows that the Clebsch representation

succeeded in including two essential elements (the spacelike momentum and the
longitudinal wave) in the equations.

Although U, was a null vector in the discussion above, it can be extended to



the spacelike domain so that T, can be represented by

T =-S,S"+ saﬂsaﬂ g, (7)

The mathematical form of the right-hand side is equivalent to the curvature term in the
Einstein equation. It should be pointed out that this equivalency was derived by breaking
the U(1) gauge symmetry for extending the CD field to the spacelike domain. Equation
(7) is acceptable because the CD field plays the role of the basic mode to represent the
spacelike 4-momenta of the interacting fields and because the inherent feature of the
relativistic field is represented by its space-time structure.

In order to apply the concept of the CD field above to draw the physical picture
of the DP, several points should be noted: The spatially homogeneous spacelike
momentum field becomes unstable if it interacts with the timelike momentum field, as
was shown in [C] of Section 2. By such an interaction, the timelike and spacelike
momentum fields can be transformed between each other, and, as a result, the spatial
structures of the fields are significantly deformed. Although such a transformation
occurs throughout the whole of the interacting area, it occurs more conspicuously at a
singular point of the material, such as at the surface of the material or at the impurity
atoms in the material (characteristic [a]).

Several discussions were made to describe this transformation: When the
timelike momentum vector satisfies the timelike KG equation, its solution takes the form
of a homogeneous wave. Such a homogeneous wavy solution can be also derived from
the spacelike KG equation satisfied by the spacelike momentum vector. Since the
constants in the KG equation represent the physical quantities of the material under study,
the transformation between the timelike and spacelike vectors can be expressed by
reversing the signs of these constants.

The information derived by these discussions is:

1) The complex-conjugate amplitudes

S¢ :QR'eXp{QXO] Sy, :—QR'exp[—on} (8)
c c c c

of the derived CD field correspond to the creation (éT) and annihilation (4 ) operators
of the quantum harmonic oscillator, respectively. Here, @ is the angular frequency.

R" is the radial component of the solution of the KG equation. This correspondence
enabled the definition of the normal mode of the electromagnetic field in a sub-

wavelength-sized field, which had been impossible with the previous theory [17].
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2) The CD field represents a longitudinal wave (the complex-conjugate amplitudes C 4

and C;) that is accompanied by the components (Lﬂ(z 0,4) and L;) satisfying the

KG equation in the spacelike domain (Fig. 4).

Fig.4 Directions of the amplitudes of the longitudinal wave (C u and C u) and those of the

accompanying components ( L/, and Lﬂ ).

1 . . . .
X" represents the propagation direction of the electromagnetic wave.

3) The components ( L,, and L;) become temporally unstable due to the interaction with

the field in the timelike domain. As a result, they are created or annihilated within a very
short duration, which means that the CD field corresponds to a virtual photon.

4) The transverse wave of the CD field is converted to a longitudinal wave at the material
surface. This means that the material surface serves as the source of a longitudinal wave,
thus successfully describing characteristic [a].

5) The spatial profile of the field is described by a Yukawa-type function, which can be

2

understood by replacing x* in S,, of eq.(8) by X', X%, or X’. As a result,

characteristic [a] was also described. This means that the DP is a localized quantum field,
created as a result of the transformation of the spacelike momentum field to the timelike
field at a singular point of the material.

6) The DP can be represented by the superposition of the longitudinal waves of the CD

field. This representation is possible because these waves behave as normal modes. It
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should be pointed out that the virtual photon behavior of the components ( Lﬂ and L; ),

accompanying this longitudinal wave, is nothing less than the origin of this successful
representation.

These findings 1) — 6) were derived by adopting the longitudinal wave in the
present theory as a physical mode. Future progress is expected to explain characteristics
[g] and [h], and also to establish the theory of the fully quantum optical version.

4 Theories having a mathematical basis

It is expected that mathematics-based theories will serve as invaluable guides for gaining
a deep understanding of the concepts of the physics-based theories for the phenomena
that originate from the DP. Examples of these theories are the quantum probability theory
and the quantum measurement theory, which are reviewed in this section. Also
demonstrated is a theory based on micro—macro duality, which serves as a foundation

for embarking on theoretical studies of off-shell science.
4.1 Quantum probability theory

Quantum probability theory has been constructed by noting characteristic [b] above [18].
This theory focuses on the families of the higher and lower energy—momentum modes
for investigating phenomena that cannot be analyzed by conventional on-shell theories.
The family of higher modes of the composite system is created as a result of light—matter
interaction and behaves like an individual entity. This entity can be defined as the DP.
The family of lower modes serves as a kind of heat-bath.

Since no a priori strict boundary between the higher and lower modes exists, it
is required to investigate the asymptotic behavior of modes where the energy—
momentum becomes large. In other words, the core of a mathematical theory for the DP
is nothing but a kind of quantum-classical correspondence for describing an asymptotic
state that appears as its quantum number increases to infinity. Hence, some general
frameworks are required for both quantum/micro and classical/macro systems.
Fortunately, a mathematical theory that meets this requirement has been constructed,
that is, the quantum probability theory. The intermediate realm, appearing between the
micro- and the macro-systems, has been successfully described by this theory.

As has been popularly known, a quantum harmonic oscillator with a large
quantum number behaves very much like a classical harmonic oscillator. The composite

12



system created by light—matter interaction is considered to be a typical example of such
a quantum harmonic oscillator. This consideration and the definition of the DP above
lead to the fact that the time averaged distribution of the position of the DP can be
governed by an arcsine law. Note that each mode of the DP gains an effective mass by
the interaction between the light and nano-material, and thus, it is not paradoxical to
consider the position of the DP. Moreover, since the size of the nano-material is much
less than the wavelength of light, the variance of the distribution will be determined by
this size. The stronger the interaction, the higher the energy at a suitable boundary
between the family of the higher mode (DP) and that of the lower mode (heat bath).
Hence, it is expected that the arcsine law will represent a sufficiently accurate
distribution of the DP when the interaction is sufficiently strong.

Since the arcsine function has a twin-peaked profile, the probability of finding
the DP will be the highest at the singular point, which is the reason why localization of
the DP occurs at the boundary. This localization feature is quite consistent with the
experimental results acquired so far [19].

Here, let us take as the most fundamental example the localization of the DP in
a fiber probe [20]. The three-dimensional density of the DP can be expressed by an

arcsine function

f(x)=C——x, )

where C and S(X) respectively denote the normalization constant and the cross-

sectional area of the fiber probe on which the DP is created. The localization of the DP
at the tip of the fiber probe, and furthermore, at the position of the impurity atoms in the
material were successfully described based on the twin-peaked spatial feature (peaks at
X=%+42 ineq. (9))[18].

In conjunction with the quantum probability theory above, a quantum walk
model was used to mathematically describe characteristics [a], [g], and [h]. It was also
used to analyze the dynamic behavior of the composite system created as a result of the
interaction between multiple quantum fields. Furthermore, it was aimed at exploring the
master equation for describing the dynamics of the DP by noting that their behaviors are
similar to those of the quantum walk. It has been experimentally confirmed that these
behaviors exhibited inherent characteristics that corresponded to those of the quantum
walk [21]: The temporal behavior of the DP energy transfer between the two NPs in Fig.
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3(a) was least-squares fitted to an exponentially decaying function exp(—t / r), where

t and 7 represent time and the time constant of the phenomena, respectively. This

exponential decay corresponds to the quantum walk dynamics”.

(*) The temporal behavior of the random walk is represented by €XP (—\/ t/ T) , which exhibits slower

decay than that of the quantum walk.

By referring to the arcsine law derived by the quantum probability theory,
numerical simulations were carried out to analyze the creation of the DP and its energy
transfer in a fiber probe-to-fiber probe system. As is schematically explained by Fig.
5(a), two fiber probes served as a sender and a receiver of the DP energy under collective
excitation by conventional propagating light.

Two assumptions were made for this analysis. They were: (al) The sender fiber
probe was coherently excited by the incident light. (a2) The created DP hopped from
one atom to an adjacent atom in a coherent manner, which corresponded to the quantum
walk process. The analysis described three energy dissipation phenomena caused by the
energy conversion from the DP to the conventional propagating light: (d1) The
conversion to a conventional electromagnetic field to be guided backward to the main
body of the sender fiber probe. (d2) The conversion to a conventional electromagnetic
field to be guided forward to the main body of the receiver fiber probe. (d3) The
conversion to a conventional electromagnetic field that propagates out from the tapered
part of the fiber probe to the outer free space. As a result, it was confirmed that, among
all of the created DPs, the one created by the pair of anti-parallel electric dipoles was
localized at the tip of the fiber probe without being dissipated through phenomena (d1)
— (d3).

Figures 5(b) and (c) show the calculated results for the single-tapered and
double-tapered fiber probes, respectively [22]. They demonstrate that the double-tapered
fiber probe concentrated the DP energy at its tip more efficiently than that at the single-
tapered one. This suggests that the double-tapered fiber probe is more advantageous for
creating/measuring the DP with higher efficiency, which is consistent with the
experimental results [23].

Future developments in this study are expected to explain also characteristics
[a], [g], and [h].
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Fig.5 Simulation by a quantum walk model
(a) The fiber probe-to-fiber probe system. (al) and (a2) represent the two assumptions. (d1)-(d3) are the
energy dissipation phenomena. (b) and (c) represent the calculated results for single-tapered and double-

tapered fiber probes, respectively. The photos show scanning electron microscopic images of these fiber
probes.

4.2 Other basic theories having a mathematical basis

(1) Quantum measurement theory: A theoretical description of characteristic [f] is
essential for understanding the process of measuring the DP. Here, the problem is how
to describe the dynamics of the DP energy transfer that occurs during the measurement.
To solve this problem, quantum measurement theory, a branch of algebraic quantum
theory, is under construction based on the theory of operator algebra, especially, C -
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algebra. C”-algebraic quantum theory is advantageous because it can explicitly describe
macroscopic classical levels of quantum systems.

Mathematical issues for constructing the algebraic quantum measurement
theory for the DP have been surveyed [24, 25]. They are:
1) Two methods are possible. Their mathematical issues are: [For the top-down method]
After the mathematical model is built based on the universal gauge principle of quantum
electrodynamics, several approximations should be made depending on the scale of the
system or the properties of the material fields. [For the bottom-up method] This method
is advantageous to build a mathematical model for describing the properties of the
energy—momentum and the properties of localization of the DP. This model should be
built by considering the ability to extend and scale it.
2) Mathematical modeling should start from the space-time area O in which nano-
materials are provided. Here, a sub-space of the real space can work as the area O. Next,

an algebra 1(0), composed of physical quantities in the area O, is considered. Then, the
temporal evolution @, °M(0) is considered for each area O. Microscopic physical
quantities, representing the boundary conditions (the lattice defects, as an example), can
be included in ¢, °. For this consideration, the measurement process can be represented

by the inclusion relation O C O, where O represents the space-time domain under

study. Finally, the measurement theory is expected to be established by the algebra {(0>).

(2) Theory based on micro—macro duality: Based on an algebraic quantum field theory,
micro—macro duality theory has been constructed as a powerful mathematical guide for
analyzing the nature of the DP [26]: Symmetry breaking in the algebra in a microscopic
area can produce multiple sector spaces. Some physical quantities in these sector spaces
satisfy the commutativity requirement, and the quantity named the center can be used to
classify the sector spaces. That is, a commutative observable classical system and a non-
commutative quantum system can coexist in each sector space, and this provides the
basic structure for quantum-classical correspondence.

The sector space can be interpreted also as a mathematically symmetric space.
It has been found through this interpretation that the automorphic form plays an essential
role. Several discussions were made by taking a fiber probe as a test system: In order to
construct a consistent theory for describing the DP, it will be a crucial breakthrough to
faithfully reproduce its proper dynamic functions. This reproduction forms the micro—
macro boundary level described by a symmetric space arising from a broken symmetry,
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which is possible by projecting the s-channel structure at the invisible micro-level to the
spacelike t-channel. If suitable automorphic forms defined on this symmetric space are
successfully identified, it will become possible to describe any of non-trivial dynamic
phenomena caused by the DP. In particular, the automorphic factor appearing in the
definition of an automorphic form will play an important role as a cocycle carrying the
dynamic properties of the invisible micro-level. In the context of the DP, this will
perhaps justify an analogy with the dynamic behavior played by the Regge trajectories,
which carry spacelike momenta in the hadronic scattering processes originating from the
dual resonance structure.

As is shown by Fig. 6, the theory based on micro—macro duality serves as a
foundation of the theories reviewed in this article. This figure also summarizes the
principal characteristics of the DP, the developed theories, their physical and/or
mathematical methods, and information derived by these theories. The red double-
pointed arrows indicate the topics commonly described by the multiple theories. By
noting these arrows, correlations between the theoretical studies can be clearly
recognized. Successful construction of off-shell science, guided by systematic studies
on the DP, is expected by analyzing these correlations. It is also expected that the micro—
macro duality theory will serve as a guide to this development.

/ [Electromagnetic response theory] [Quantum measurement theory] \
/ |~ Longitudinal component of the electric field Description of macroscopic classical levels of quantum system \
- 1 §

- Non-resonant condition «

|
i Noarfisldinteraction ’Msturbed by measurements ’

Dressed Photon

Created and Localized at the Broad diétributions of
boundaries on a nanometric material the energy and momentum | |
| — 1 4
v r 1

[Theory based on spatio-temporal vortex hydrodynamics] [Quantum probability theory]

* Harmonic oscxlIator\_w(:rrespondence, micro-macro correspondence
- Virtual photon

4 + Harmonic oscillator
\ \ : Bfour)dary - Boundary and impurity atoms /
\ + Longitudinal wave /

Fig.6 The principal characteristics of the DP, developed theories, their physical and/or mathematical

ir[Theory based on the micro-macro duality]r } =

methods, and information from the theoretical studies described in Sections 3 and 4.

Red double-pointed arrows indicate the topics common to the adjacent theories.

5. Summary

This article reviewed recent progress in the theoretical studies toward the development

of off-shell science. First, it was pointed out that the DP is a quantum field whose
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energy—momentum relation deviates from the mass-shell. Second, the characteristics of
the DP, as an oft-shell quantum field, were reviewed. Third, theories having a physical
basis were demonstrated. They were the electromagnetic response theory and a theory
based on spatio-temporal vortex hydrodynamics. Fourth, theories having a mathematical
basis were introduced, which can serve as invaluable guides for gaining a deep
understanding of the concepts of the physics-based theories above. These theoreies were
quantum probability theory and quantum measurement theory. Finally, a micro—macro
duality theory was demonstrated, which serves as a foundation for embarking on the
study of off-shell science.
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Abstract

This paper investigates the gigantic magneto-optical effect in a SiC light-emitting diode fabricated by dressed-
photon—phonon (DPP)-assisted annealing. Very large values of the Verdet constant and the Faraday rotation angle
were obtained, namely, 660 deg/A and 2480 deg/cm, respectively, at a wavelength of 405 nm. The remanent
magnetization was 0.36 mT. The magnetization curve, acquired at 27 °C, exhibited a clear hysteresis characteristic.
This behavior of the SiC crystal, equivalent to that of a ferromagnet, was attributed to Al atom pairs autonomously

formed as a result of the DPP-assisted annealing.

1 Introduction

Although crystalline silicon (Si1) has been popularly used for electronic devices, there is
a long-held belief that Si is not suitable for use in light-emitting devices because it is an
indirect-transition-type semiconductor, and thus, its emission efficiency is very low.
However, dressed-photon—phonon (DPP)-assisted annealing [1] has drastically
increased the emission efficiency, resulting in the realization of novel light sources,
including light-emitting diodes (LEDs) and lasers [2]. A novel photo-detector with
optical gain [3] has also been realized by using crystalline Si. These devices can be
advantageously applied to future photonic technology because crystalline Si is a
nontoxic, abundant material, and furthermore, these devices can be integrated with
electronic devices. Crystalline SiC, another indirect-transition-type semiconductor, has

also been used to fabricate LEDs having light emission in the short-wavelength region
1
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with the DPP-assisted annealing [4,5]. In addition to these optical functional devices, an
optical polarization rotator using crystalline SiC has been invented [6,7], which can be
used as an optical signal modulator. The advent of such novel devices means that
conventionally used direct-transition-type composite semiconductors can be replaced by
indirect-transition-type semiconductors in the fabrication of the basic devices needed for
future optical signal processing and transmission systems.

The present paper investigates the fabrication and operation of an optical
polarization rotator using crystalline SiC. The unique phenomenon involved here is that
the crystalline SiC exhibits a gigantic magneto-optical effect and also a ferromagnetic

characteristic.

2 Device structure

This section briefly describes the SiC device structure for the optical polarization rotator.
A detailed description has been given in refs. [4,5]. An n-type 4H-SiC crystal with a
resistivity of 25m Qcm and (0001) surface orientation was used. A 500 nm-thick n-type
buffer layer was deposited on this crystal, after which a 10 um-thick n-type epitaxial
layer (n-type dopant (N atoms) density 1x10'® cm™) was deposited. The surface of the
4H-SiC crystal was then implanted with an p-type dopant (Al atoms) by ion implantation.
To activate the Al ions for forming a p-n homojunction, thermal annealing was
performed for 5 min. at 1800 °C. After this, a second thermal annealing was performed
under the same conditions as above.

Although the structure was almost the same as that of the SiC-LED described
in refs. [4,5], it was inverted, resulting in the SiC substrate being the top layer.
Furthermore, an H-shaped electrode formed of a Cr/Pt/Au (100 nm/150 nm/200 nm
thick) stripe film was deposited on the top surface, as shown in Fig. 1(b). A homogeneous
electrode formed of Cr/Ni/Au (100 nm/150 nm/200 nm thick) was deposited on the

bottom surface. After this, the 4H-SiC crystal was diced to form a device with an area
of 500 umx500 pm. Figures 1(a) and (b) show the cross-sectional structure of a

fabricated device and a photograph of the device taken from above, respectively.

A forward bias voltage of 12 V (current density 45 A/cm?) was applied to the
device to bring about annealing due to Joule-heat, which caused the Al atoms to diffuse.
During this process, the device was irradiated from the top surface with laser light

(optical power 20 mW) having a wavelength of 405 nm. This induced the DPP-assisted
2



annealing process, which modified the Al diffusion, leading to the autonomous
formation of a spatial distribution of Al atoms. As a result, the device worked as an LED
by momentum exchange between the electrons in the conduction band and the
multimode coherent phonons in the DPP. The light emission principle, device fabrication,

and operating characteristics of this LED were described in refs. [4, 5].
Cr/Pt/Au

Substrate

SiC
n-type
Epitaxial Iayer{ p-tzge

Cr/Ni/Au

(a) (b)
Fig. 1 Cross-sectional profile (a) and photograph (b) of a polarization rotator using a 4H-SiC crystal. The

yellow circle represents the cross-sectional position of the incident light beam.

3 Performance of optical polarization rotator

To operate the device as an optical polarization rotator, a current was injected to the H-
shaped electrode to inject electrons and to generate a magnetic field, simultaneously.
The spatial distribution of the magnetic flux density B, normal to the top surface (the
upward green arrow in Fig. 2(a)) was estimated by numerical simulation. Figure 2(b)
shows the result, where the injection current | was 30 mA. (Since the p-n
homojunction was only 75 pum below the top surface, the value of B, in this figure

can be considered to be equal to that at the p-n homojunction.)
In order to measure the polarization rotation angle @

rot ?

linearly polarized 405

nm-wavelength light was made normally incident on the top surface of this device, as
schematically illustrated in Fig. 3(a). The yellow circles in Figs. 1(b) and 2(b) represent
the cross-section of the incident light beam. The value of B, at this spot was evaluated
to be 1.8 mT from Fig. 2(b). That is, the relation

dB,

=0.06 (T/A) (1)

holds.
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Fig. 2 Magnetic flux density generated by the current injected into the H-shaped electrode. (a) Schematic

illustration of the profile of the H-shaped electrode formed of a Cr/Pt/Au stripe film on the top surface.
The upward green arrow represents the normal component B  of the generated magnetic flux density.

(b) Calculated spatial distribution of B , where the injected current was 30 mA. The yellow circle

represents the cross-sectional position of the incident light beam (Fig. 3(a)).
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Fig. 3 Measured temporal variation of the light intensity and the estimated values of the polarization

rotation angle ¢, . (a) Experimental setup to measure the value of g _ . (b) Closed circles represent the
measured light intensity transmitted through the Glan-Thompson prism. The red line A is the waveform
of the triangular current injected into the device. Its frequency and amplitude were 166 Hz and 30 mA,
respectively. (¢) The relation between B and 8., . (The unit ( zrad) written along the vertical axis of

Fig. 2 in ref.[6], and also that of Fig. 8.18(b) in ref. [7], is wrong. The correct unit (rad) is written on the

vertical axis of (b) above.)

The light reflected from the Cr/Ni/Au film on the rear surface propagated back
to the top surface and was transmitted through a Glan-Thompson prism, after which the
transmitted light intensity was measured. Closed circles in Fig. 3(b) represent the
measured values of the transmitted light intensity. As shown by a red line A, the

frequency and the amplitude of the triangular current injected into the H-shaped
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electrode were 166 Hz and 30 mA, respectively. The measured relation between B,

and 6,, was derived from this figure and is represented by the red circles in Fig. 3(c).

The solid line B was fitted to these circles. From the slope of the line B, the relation

déo.,
—Zrot =3 2x10%(deg/T 2
B (deg/T) (2)

1

is derived.

From egs. (1) and (2), the relation

0y _dB. 90 L _660(deg/a) 3)
dldl dB, 2

is derived, where the value (1/2) was inserted in the left-hand side in order to evaluate
the value for the one-way propagation of the light through the SiC crystal. This value
corresponds to the Verdet constant, which was 10°-10° times higher those of
conventional paramagnetic materials that are transparent in the visible region [8]. This
means that the present SiC crystal exhibited a gigantic magneto-optical effect.

The right-pointing blue arrow in Fig. 3(c) indicates that ¢  saturated as B,
increased, as has been widely observed in conventional ferromagnetic materials. The
saturated value was 0.65 rad (=37 deg). The total optical path length of the incident light
propagating through the SiC crystal was 150 um because the crystal thickness was 75
um, as shown in Fig. 1(a). Thus, the saturated value, normalized to the unit optical path
length, corresponding to the Faraday rotation angle [8], was as large as 2480 deg/cm.
Furthermore, the downward green arrow indicates the threshold value of B, which was
0.36 mT. This value corresponds to the remanent magnetization in conventional
ferromagnetic materials, and was as large as those values. The two arrows suggest that
the presently used SiC crystal acquired novel properties, equivalent to those of
ferromagnetic materials.

In order to find the origin of such novel ferromagnetic properties, a
magnetization curve was acquired uisng a SQUID [6]. The results are given in Fig. 4.
Here, the applied magnetic field H (Oe) was proportional to the current injected to the
H-shaped electrode. The black squares represent the measured values of the
magnetization M (emu/cm?) per unit volume of the SiC crystal. The solid curves were
fitted to the black squares. These results clearly exhibit a hysteresis characteristic, which
is inherent to ferromagnetic materials. Since these results were acquired at 27 °C, it was
confirmed that the Curie temperature was estimated to be higher than 27 °C. Red open
circles in this figure are the measured values before the DPP-assisted annealing was
carried out, where the values of M are much smaller those of the black squares, and

no hysteresis characteristic is seen.



By comparing the black squares and red open circles, it was confirmed that the
semiconductor SiC crystal was made to behave as a ferromagnet as a result of the DPP-
assisted annealing. This behavior originated from the formation of Al atom pairs,
autonomously formed as a result of the DPP-assisted annealing. (For reference, this
autonomous formation has also been confirmed in the case of B atoms in a Si-LED [2].)
This origin can be understood by referring to the following two research findings:

(1) It has been found that the triplet state of the electron orbital in an Al atom pair is
more stable than the singlet state [9].
(2) Two electrons with parallel spins in the triplet state induce the ferromagnetic

characteristic [10].

-6 . . .
-3000 -2000 -1000 0 1000 2000 3000

H (Oe)

Fig. 4 Magnetization curve, measured at 27 °C. Black squares and red open circles are for the 4H-SiC

crystals after and before the DPP-assisted annealing, respectively.

4 Summary

This paper investigated the gigantic magneto-optical effect in a SiC-LED fabricated by
DPP-assisted annealing. This device rotated the polarization angle of linearly polarized
incident light. Very large values of the Verdet constant and the Faraday rotation angle
were obtained, namely, 660 deg/A and 2480 deg/cm, respectively, at a wavelength of
405 nm.

The magnetization curve, acquired at 27 °C, exhibited a clear hysteresis
characteristic, by which it was confirmed that the SiC crystal behaved as a ferromagnet.
This characteristic was attributed to Al atom pairs, autonomously formed as a result of

the DPP-assisted annealing.
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Abstract

This paper reviews basic research and technical developments on silicon (Si) light-emitting diodes (Si-LEDs)
fabricated by using a novel dressed-photon—phonon (DPP) annealing method. These devices exhibit unique light
emission spectral profiles in the wavelength range 900-2500 nm, including novel photon breeding features. The
highest optical output power demonstrated was as high as 2.0 W. It is pointed out that boron (B) atoms, serving as p-
type dopants, formed pairs whose length was three-times the lattice constant of the host Si crystal. These B atom
pairs are the origin of the photon breeding. A phenomenological two-level two-state (TLTS) model is presented,
revealing that the external electric and optical fields, applied during the DPP-assisted annealing, drastically decrease
the height of the potential barrier between the two states. This decrease is the reason why the spatial distribution of
B atoms is efficiently modified by the DPP-assisted annealing even at low temperature. The TLTS model and a
stochastic model confirm that the optimum DPP-assisted annealing is realized by setting the ratio of the electron
injection rate and the photon irradiation rate to 1:1. A phase diagram is presented as an aid for developing a novel

theory for realizing more efficient and higher-power Si-LEDs.

1 Introduction

Crystalline silicon (Si1) has long been a key material supporting the development of
electronics engineering for more than half a century. However, because Si is an indirect-
transition type semiconductor, it has been considered to be unsuitable for light-emitting
devices. Because the bottom of the conduction band and the top of the valence band in
Si are at different positions in reciprocal lattice space, the momentum conservation law
requires an interaction between an electron—hole pair and phonons for radiative
recombination; however, the probability of this interaction is low.

Nevertheless, Si has been the subject of extensive research on the fabrication of
Si light-emitting devices. These include, for example, research using porous Si [1], a
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super-lattice structure of Si and SiO> [2], and Si nanoprecipitates in SiO> [3]. However,
the devices fabricated in these research studies have some limitations, such as low
efficiency, the need to operate at low temperature, complicated fabrication processes,
and the difficulty of current injection.

To solve these problems, a novel method that exploits the dressed photon (DP)
has been invented [4,5]. The DP is a quantum field created when a photon couples with
an electron—hole pair in a nanometric space. Theoretical studies have shown that a DP
could excite multi-mode coherent phonons and couple with them to create a novel state
called a dressed-photon—phonon (DPP) [4,6]. To realize a light-emitting diode (LED) by
using crystalline Si, DPPs are used two times: first for device fabrication, and second
for device operation.

In the present paper, first, the fabrication and operation of a Si-LED are
described in Sections 2 and 3, respectively. Second, Sections 4 and 5 review a technique
for controlling the spatial distribution of boron (B) atoms by using a novel DPP-assisted
annealing method. Finally, the optimum condition for this annealing is presented in
Section 6. A summary is given in Section 7. Note that this paper discusses the principle
and method of realizing infrared Si-LEDs. Refer to ref. [7] for details of visible light Si-
LEDs, Si-lasers, and LEDs fabricated using other indirect-transition-type
semiconductors (SiC and GaP), and related devices, which have been developed by

using DPP-assisted annealing.

2 Fabrication

For device fabrication, first, the surface of an n-type Si crystal is doped with B atoms to
transform it to a p-type material for forming a p—n homojunction structure. Second, the
Si crystal is annealed via Joule heat generated by current injection. During the annealing,
the Si crystal surface is irradiated with light to create DPPs at the B atoms. This novel
annealing has been called DPP-assisted annealing [7].

In early work on fabrication, an n-type Si crystal with low arsenic (As)
concentration was used [5]. Recently, however, As atoms have been replaced by
antimony (Sb) atoms (density, 1x10'> /cm?®) because Sb atoms, which are heavier than
As and Si atoms, are more advantageous for localizing the created phonons, which can

couple with a DP for creating a DPP more efficiently. The thickness and the electrical
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resistivity of the n-type Si crystal were 625 pm and 5.0 Qcm, respectively.

Two-step ion implantation was carried out to dope the Si with B atoms:
(1) First step: B atoms were implanted with an energy of 700 keV at a dose of
2.7x10'/cm?. The peak concentration of B atoms was 1x10'%/cm® at a depth of 1400 nm
from the Si crystal surface.
(2) Second step: B atoms were implanted with an energy of 10 keV at a dose of
5.3x10'/cm?. The peak concentration of B atoms was 1x10*%/cm? at a depth of 45 nm
from the Si crystal surface. This second doping step was advantageous for decreasing
the resistivity at the crystal surface.

Mesh-electrode type and flip-chip type devices were fabricated to achieve
higher current injection and efficient heat dissipation. These devices are described in the

following subsections.
2.1 Mesh-electrode type LED

Figure 1 shows a photographic profile of the fabricated mesh-electrode type device [8,9].
A homogeneous flat film composed of Cr/Al/Au layers (thicknesses: 30/200/300 nm)
was coated on the n-type surface of the Si crystal described above to serve as a cathode.
A mesh film of Cr/Au (thicknesses: 30/300 nm) was coated on the p-type surface to serve
as an anode. The crystal was diced to form devices with areal sizes of 1 mm x 1 mm,
and these devices were bonded on a PCB substrate made of high-thermal-conductivity
AIN. The diameters of the electric wires bonded to the devices were increased from the
previously employed 25 um [10] to 45 um to avoid damage to the wires and electrodes

during high current injection.

—
0.5mm

Fig. 1 Photographic profile of the fabricated mesh-electrode type LED.

The conditions for the DPP-assisted annealing were: (1) A substrate temperature

of 285 K; (2) irradiation light with a wavelength of 1342 nm (photon energy hv

anneal —



0.925 eV) and a power of 2.0 W; (3) injected current having a triangular waveform (50
s period) and a peak current of 1.3 A (current density 1.3 A/mm?); and (4) an annealing

time of 2 hours.

Since NV, is lower than the bandgap energy E, of the Si crystal, the

irradiated light is not absorbed by the Si crystal. Therefore, in the regions where DPPs
are hardly created, B atoms diffuse simply due to the Joule heat generated by the applied
electrical energy. However, in the regions where DPPs are easily created, the thermal
diffusion rate of the B atoms becomes smaller via the following processes:

(1) Since the energy of the electrons driven by the forward-bias voltage is higher than

E, . the energy difference E. —Eg, between the quasi Fermi energies in the conduction
band E and the valence band E,, is larger than E,. Therefore, the Benard—

Duraffourg inversion condition is satisfied. Furthermore, since hv,, ., <E, , the

irradiated light propagates through the Si crystal without absorption and reaches the p—
n homojunction. As a result, it creates DPPs efficiently at the B atoms. Since stimulated
emission takes place via DPPs, the electrons create photons and are de-excited from the
conduction band to the valence band via the phonon energy level.

(2) The annealing rate decreases because a part of the electrical energy for generating
the Joule heat is spent for the stimulated emission of photons. As a result, at the regions
where the DPPs are easily created, the B atoms become more difficult to diffuse.

(3) Spontaneous emission occurs efficiently at the regions in which the DPPs are easily
created because the probability of spontaneous emission is proportional to that of
stimulated emission. Furthermore, with the temporal evolution of process (2), the light
from stimulated and spontaneous emission spreads through the whole Si crystal, and as
a result, process (2) takes place autonomously throughout the entire volume of the Si
crystal.

It is expected that this DPP-assisted annealing will form the optimum spatial
distribution of the B atoms for efficient creation of DPPs, resulting in efficient LED
operation. In a previous experimental study, temporal evolution of the temperature of
the Si crystal surface was measured as annealing progressed [5]. After the temperature
rapidly rose to 427 K, it fell and asymptotically approached a constant value (413 K)
after 6 min, at which time the temperature inside the Si crystal was estimated to be about

573 K. The features of this temporal evolution are consistent with those of the principle
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of the DPP-assisted annealing under light irradiation described above: The temperature
rises due to the Joule heat generated by the applied electrical energy. However, the
temperature gradually falls because stimulated emission is induced by the DPPs created
at the B atoms. Finally, the system reaches the stationary state. This temporal decrease
in the device temperature, and the temporal increase in the emitted light intensity, have
been theoretically reproduced by a stochastic model of the spatial distribution of B atoms,
which was controlled by DPPs [11].

2.2 Flip-chip type LED

To achieve higher injected current density than that of the mesh-electrode type device, a
flip-chip type LED was fabricated [8,9]. First, its areal size was decreased. Second,
larger-diameter electric wire was used. Third, a flip-chip structure was employed, in
which the p-type layer was contacted to a PCB substrate for efficient heat dissipation.

Figure 2 shows a photographic profile of the fabricated device: A homogeneous
flat film formed of Cr/Au/Ti/Pt/Au layers (thicknesses: 3/300/100/300/500 nm) was
coated on the p-type surface of the Si crystal to serve as an anode. A patterned film of
Cr/Au (thicknesses: 10/500 nm) was coated on the n-type surface as a cathode. The
crystal was diced to form devices with areal sizes of 0.35 mm x 0.35 mm, which was
smaller than that of the mesh-electrode type described in Subsection 2.1. This is
equivalent to the size of commercially available devices made by using a conventional
direct-transition type semiconductor. The diced device was bonded on a PCB substrate
made of AIN. A single electric wire with a diameter as large as 60 um was used to realize
high-density current injection without any electrical damage.

Fig. 2 Photographic profile of the fabricated flip-chip type LED.

The conditions for the DPP-assisted annealing were: (1) A substrate temperature

of 289 K; (2) irradiation light with a wavelength of 1342 nm (photon energy hv
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0.925 eV) and a power of 0.24 W (areal power density: 1.9 W/mm?); (3) injected current
with a triangular waveform (10 s period) and a peak current of 0.16 A (current density:

1.3 A/mm?); and (4) an annealing time of 7.2 hours.
3 Operation

The operating principle of the fabricated Si-LED involves electron—hole pairs receiving
enough momentum from coupled coherent phonons if the spatial distribution of B atoms
in the p—n homojunction can be optimized for creating DPPs. Therefore, the light
emission efficiency would be drastically increased by obeying the momentum
conservation law.

For this operation, the light irradiation is no longer required; it is used only
during the DPP-assisted annealing. Only forward current is injected, as in the case of
conventional LED operation. This forward current causes an electron to be injected into
the conduction band at the p—n homojunction, creating a photon by spontaneous
emission even though its probability is very low. However, once this photon is created,
it subsequently creates a DPP at the B atom in the p—n homojunction, and this DPP
interacts with another electron in the conduction band to exchange momentum so that a
secondary photon is created. By repeating these momentum exchange and photon
creation processes, the emitted light intensity is amplified and reaches a stationary value
within a short duration, so that sufficiently high-power light is emitted from the p-n
homojunction.

It should be noted that photon breeding occurs during device operation [12]:
The photon energy of the emitted light is equal to the photon energy hv, .., ofthe light

irradiated during the annealing. (This is in contrast to a conventional device, where the

photon energy of the emitted light is determined by E.) This is because the difference

between hv, ., and E; is compensated for by the energy of the created phonons.

This compensation is possible because the spatial distribution of the B atoms has been
controlled by the light irradiated during the DPP-assisted annealing, enabling the most
efficient emission of photons with identical photon energy. In other words, the light
irradiated during the DPP-assisted annealing serves as a “breeder” that creates photons

with an energy equivalent to hv__ . This is the reason why this novel phenomenon is

anneal

named photon breeding with respect to photon energy.

Photon breeding has been observed not only for the photon energy but also for
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photon spin [13]. For example, linearly polarized light is emitted from the LED if it was
fabricated by irradiating the LED with linearly polarized light during the annealing step.
(Remember that the light emitted from a conventional LED is not polarized.)

The relationship between the forward-bias voltage (V) applied to the Si-LED
and the injection current (| ) indicated negative resistance [14]. This was due to the
spatially inhomogeneous current density and the generation of filament currents. In other
words, the B distribution had a domain boundary, and the current was concentrated in
this boundary region. A center of localization where the electrical charge is easily bound
was formed in this current concentration region, and a DPP was easily created there.
That is, the negative resistance is consistent with the principle of the device fabrication

described in Section 2.
3.1 Mesh-electrode type LED

Figure 3 shows the relations between the injected current (1) and the optical output

power ( P ) of the upward-emitted light from the upper surface of the Si-LED, acquired

at several substrate temperatures [8,9]. The figure shows that P is proportional to | 2

in the lower current region, whereas it is proportional to | * inthe higher current region.

The origin of this | ? -dependence has been attributed to the momentum transfer between
localized phonons and electrons caused by electron—electron scattering [10]: In the case

of a conventional LED fabricated with a direct-transition-type semiconductor, electron—
electron scattering decreases the light emission efficiency. However, in the present Si-
LED, this scattering process plays a different role. As will be explained in Section 4, the
B atom pairs in the p—n homojunction are apt to stretch in a plane perpendicular to the
[001] orientation of the Si crystal, i.e., perpendicular to the propagation direction of the
light irradiated during the DPP-assisted annealing. Here, not only phonons but also
electrons can be captured by these B atom pairs because they serve as cavity resonators
for creating localized phonons. In other words, electrons can appear due to DPP-assisted
annealing even in the area of the energy band structure where electrons cannot exist
originally. Thus, two electrons could couple with localized phonons, leading to light
emission by electron—electron scattering and the observed 1° -dependence of the
emitted light power P .

The |* -dependence originated in amplification by stimulated emission. By



defining the current at the boundary between the region of the |°-and |*-dependences

as the threshold 1, , it is found that its value was lower at lower substrate temperatures.

For example, it was 580 mA at 77 K. This means that the threshold current density was
0.58 A/mm?, which is close to the threshold current density (0.20-0.35 A/mm?) of a Si-

laser fabricated by the DPP-assisted annealing [15]. The highest optical output power

in Fig. 3 was 2.0 W with an injection current of 2.0 A and a substrate temperature of 77
K. This value is as high as 103-times that of a commercially available LED".

*For example, the optical output power of a Hamamatsu Photonics device L12509-0155K, which is made

of a direct-transition type semiconductor (InGaAs), is 2 mW. The peak emission wavelength is 1.55 pm.
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Fig. 3 Relations between the injection current and the optical output power.

Substrate temperatures were 77 K (A), 273 K (B), 290 K (C), and 293 K (D).

Figure 4 shows the spectral profile of the emitted light, which was acquired by

cooling the substrate to 77 K and injecting a current of 2.0 A. In this figure, E,

represents the bandgap energy of the Si crystal at 77 K. This figure shows that the

spectral profile has several peaks at E, —nE ., where n is an integer and E

phonon



is the phonon energy. The spectral peak at E, —3E . corresponds to the photon

energy hv of the light irradiated during the DPP-assisted annealing [13]. This

anneal
correspondence is the photon breeding described in Subsection 2.1 [12]. Three phonons

contribute to the light emission at E - 3E because the length of the B atom pair

phonon »
is three-times the crystal lattice constant of Si. This figure also shows the higher

harmonics of the phonon contributions, i.e., E;—6E ., and E;-9E . .
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Fig. 4 Spectral profile of the emitted light at substrate temperature of 77 K.
3.2 Flip-chip type LED

Figure 5 shows the relations between | and P  of the upward-emitted light from the
upper surface of the Si-LED, acquired at several substrate temperatures. The highest
optical output power in this figure was as high as 2.0 W at an injection current of 3.0 A
and a substrate temperature of 77 K. This demonstrates that an extremely high optical
output power density was achieved, as high as eight-times that of the mesh-electrode
type LED described in Subsection 3.1.

The relations between | and P exhibited more complicated profiles than

those in Fig. 3: In the low-current region [a], P increased slowly with increasing |,
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whereas it increased rapidly in the high-current region [c]. The unique feature is that P

decreased with increasing | in the intermediate region [b]. Figures 6(a)-(c) show
photographs of the upward-emitted light spots in the regions [a]-[c], respectively.
Among them, Fig. 6(b) shows that the light was emitted not only in the upward direction
but also toward the side of the device. This side emission was attributed to the decrease
in the observed value of P in region [b]. It should be noted that this side emission was
due to stimulated emission, which suggests the possibility of super-luminescence or

lasing operation.

Current density (A/mm?)
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Fig.5 Relations between the injection current and the optical output power of the upward-emitted light
from the surface of the Si-LED.
Substrate temperatures were 77 K (A), 195 K (B), 255 K (C), and 283 K (D).

(@) (b) (c)

Fig.6 Photographs of the upward-emitted light spots.

(a), (b), (c) are images obtained in regions [a], [b], and [c] in Fig. 5, respectively.

As was the case in Fig. 3, the threshold 1, can be defined as the current at
10



the boundary between regions [b] and [c]. Figure 7 shows its dependence on the substrate

temperature | . The solid line, fitted to the experimental results indicated by the closed

circles, was expressed as I, = 1,exp(T /T,). The characteristic temperature T, in this

expression was 63 K, which corresponded to the energy of three phonons, 3E ., , in

the DPP. This means that the electron—hole pair was confined in the potential well

formed by three phonons. This value of T, was as high as that of a conventional laser

fabricated by a direct-transition type semiconductor (InGaAsP), lasing at a wavelength
of 1.3 um [16], which suggests that future progress in this work will realize highly
reliable light-emitting devices using crystalline Si.
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Fig. 7 Relation between the substrate temperature and the threshold current.

Figure 8(a) shows the spectral profile of the light emitted from the flip-chip type
LED, which was acquired by cooling the substrate to 77 K and injecting a current of

3.21 A. Figure 8(b) shows the profile at a substrate temperature of 283 K and an injection

current of 2.45 A. These figures also clearly demonstrate spectral peaks at E; —3E .,

E, —6E oon-and E;—9E ., as was the case in Fig. 4.

4 Spatial distribution of boron

This section reviews the three-dimensional spatial distribution profile of the doped B
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atoms formed as a result of the DPP-assisted annealing [13]. Atom probe field ion
microscopy was used to acquire this distribution with sub-nanometer resolution [17]. It
should be noted that the Si crystal is composed of multiple cubic lattices with a lattice
constant a of 0.54 nm [18], and its top surface lies in the xy-plane (Fig. 9). The light
irradiated during the DPP-assisted annealing is normally incident on this plane; i.e., the
light propagation direction is parallel to the z-axis.

Wavelength (um)

2.0 {5 :
. | | 1.0

4.01" E_q - 6Ephonon

|

2.0 Eg a 3Ephonon

Spectral power density (W/eV)

0 | 1 | |
0.6 0.8 1.0 1.2 14
Photon energy (eV)
(a)
Wavelength (um)
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(b)

Fig. 8 Spectral profiles of the light emitted from the flip-chip type LED at substrate temperatures of 77 K
(a) and 283 K (b).
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Fig. 9 Profile of the Si-LED under irradiation for the DPP-assisted annealing.

Some of the regularly arranged Si atoms are replaced by the doped B atoms in
the DPP-assisted annealing. It has been pointed out that phonons can be localized at the
B atoms for creating DPPs under light irradiation because the B atoms are lighter than
the Si atoms. However, for this localization, it has also been pointed out that two or more
adjacent B atoms (in other words, two or more unit cells containing B atoms) are
required [19]. Since the doped B atom concentration is sufficiently low, making it
difficult for more than three B atoms to aggregate, the following discussion considers
two closely located adjacent B atoms (a B atom pair), at which a phonon is localized for
creating a DPP. That is, the pair of unit cells containing the B atoms serves as a phonon
localization center.

Figures 10(a) and (b) show the numbers of B atom pairs plotted as a function
of the separation, d, between the B atoms in the pair, which were derived from the
measurement results. Since the distribution of the number of B atom pairs is nearly
random, it can be least-squares fitted by the Weibull distribution function (the solid curve
in these figures). In the un-annealed Si crystal (Fig. 10(a)), the measured number of B
atom pairs deviates from the solid curve in the range d >4.5 nm. The deviation depends
on the characteristics of the ion implantation.

In contrast, in the Si crystal after the DPP-assisted annealing (Fig. 10(b)), the
deviation is much less than that in Fig. 10(a), which means that the DPP-assisted
annealing modified the spatial distribution and decreased the deviation induced by the

ion implantation, making the distribution more random. However, at specific values of
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d (=na, where n=3, 4, 5, 6; refer to the four downward arrows in this figure), the
number of B atom pairs still deviates from the solid curve and is larger than that of the
solid curve. This is explained as follows: The B atom pair with the shortest d (i.e.,
equal to the lattice constant a) can orient in a direction parallel to the [100], [010], or
[001] orientation because the Si crystal is composed of multiple cubic lattices. As a result,
the momentum of the localized phonon points in this direction, which corresponds to the
I'- X direction in reciprocal space. Thus, a photon is efficiently created because this
['- X direction is the same as the direction of the momentum of the phonon required
for recombination between an electron at the bottom of the conduction band at the X -
point and a hole at the top of the valence band at the [ -point. Here, it should be noted
that the absolute value of the momentum of the phonon hastobe h/a for this electron—
hole recombination to take place. Furthermore, it should also be noted that, among the
phonons localized at the B atom pair with separation d (=na), the absolute value of
the momentum of the lowest mode is h/na. By comparing these two absolute values,
it is found that the DPP at this B atom pair has to create n phonons for recombination.
Thus, it can be concluded that the four downward arrows in Fig. 10(b) indicate selective
increases in the number of B atom pairs with separation d =na due to the DPP-

assisted annealing, and these pairs serve as localization centers for the phonons.
n=4 5 6
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Fig. 10 Number of B atom pairs plotted as a function of the separation d between the B atoms in the

pair. (a) The un-annealed Si crystal. (b) The Si crystal subjected to DPP-assisted annealing.
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Figure 11(a) shows the spatial distribution of B atom pairs after the DPP-
assisted annealing, which was recently acquired by improving the accuracy of atom
probe ion microscopy [20]. The thick downward arrow in this figure clearly
demonstrates that the deviation takes the maximum value at n=3, which means that B

atom pairs most efficiently create three phonons for light emission, as is schematically

shown in Fig. 11(b). As a result, the emitted photon energy hv, is expressed as

hv,, =E, -3E By substituting the values of E (= 1.12 eV) and the relevant

phonon *

optical mode phonon energy E (=65 meV [21]) into this equation, the value of

phonon

hv, is derived to be 0.925 eV, which is identical to the photon energy hv_ .

em

irradiated during the DPP-assisted annealing. This numerical relation is consistent with
the experimental results in Figs. 4 and 8, which confirms that photon breeding with

respect to photon energy occurs. The two thin downward arrows in Fig. 11(a) represent

the values at n=6 and n=9, which correspond to E,-6E, . and E, -9E

phonon »

respectively, in Figs. 4 and 8.
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Fig. 11 (a) Number of B atom pairs, acquired by improving the measurement accuracy, and (b) the energy

band structure of Si for schematically explaining light emission.
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Figures 10(b) and 11(a) indicate selective increases in the number of B atom
pairs with separation d = na. This means that, since n is an integer, B atom pairs are
apt to orient along a plane perpendicular or parallel to the top surface of the Si crystal
(zenith angle @=0° or 90°). Orientation along other directions in which n is not
an integer (@ = 0°,90°) hardly occurs. Figure 12 shows the relation between the zenith
angle 6 and the number of B atom pairs. It can be seen that this number takes the
maximum value at 6=90°, which means that the B atom pairs in the p—n homojunction
are apt to stretch in the xy-plane, which is perpendicular to the [001] orientation of the
Si crystal, i.e., perpendicular to the propagation direction (z-axis) of the light irradiated
during the DPP-assisted annealing. On the other hand, the number of B atom pairs takes
the minimum value at & =0°, which means that the B atom pairs hardly orient along
the propagation direction (z-axis) of the light irradiated during the DPP-assisted
annealing. This is because the phonons are hardly localized along this direction since
their momenta are parallel to d=90° [22].

It is expected that photon breeding takes place not only with respect to photon
energy, as described in Section 3, but also with respect to photon spin. That is, the light
emitted from the LED can be polarized if the LED is fabricated by irradiating the Si
crystal with polarized light during the DPP-assisted annealing. The fabrication method
is the same as that described in Section 2, except that the irradiated light is linearly
polarized along the x -axis. The diffusion of the B atoms was controlled by the linearly
polarized light irradiated during the DPP-assisted annealing, with the result that the B
atom pairs oriented along the Yy -axis . It has been experimentally confirmed that the

degree of linear polarization increased with increasing DPP-assisted annealing time [13].
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T
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Fig. 12 Relation between the zenith angle € and the number of B atom pairs.

Recent experimental work has confirmed that B atom pairs tend to form a chain-
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like configuration [20]: Figures 13(a) and (b) show these configurations before and after
the DPP-assisted annealing, respectively, which were acquired by the atom probe field
ion microscopy. The short black arrows in these figures represent B atom pairs. The
probability of one B atom pair existing in close proximity to the other pair in Fig. 13(a)
was 0.743. In contrast, the probability in Fig. 13(b) increased to 0.788. The increase
indicates that the B atom pairs tend to form a chain-like configuration. The red curves
in these figures represent such a configuration.

40nm

(a) (b)

Fig. 13 Measured spatial distribution of B atom pairs, acquired before (a) and after (b) the DPP -assisted
annealing.
The arrow in these figures represents the B atom pair. Red curves represent the chain-like configurations

of the B atom pairs.

5 Effectiveness of the low-temperature DPP-assisted annealing

This section examines the reason why the spatial distribution of B atoms was effectively
controlled by the DPP-assisted annealing at a temperature as low as 573 K, as presented
in Subsection 2.1. For this examination, a two-level two-state (TLTS) model is used.
This model has been adopted for accurately describing the spatial distribution of Zn
atoms doped in a GaP-LED [23]. It enables evaluation of the potential barrier height of
the electron, which is decreased by applying an external field. For reference, the details
of the TLTS model have been reviewed in refs. [24,25].

Figure 14 shows the energy level diagram of the two-level system model [25].

The horizontal axis does not represent any specific physical quantity, whereas the

vertical axis is the electron energy. The states A and B represent the electron states before
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and after the DPP-assisted annealing, respectively. They are composed of two energy

EgB>) and the excited state (‘ EeXA>,

levels, i.e., the ground state (‘ E, A> , EexB>), which

respectively correspond to the valence and conduction bands in a semiconductor. The
DPP-assisted annealing forces a forward transition from state A to state B. (The

possibility of a backward transition from state B to state A is reviewed in Section 6.) The

initial and final states of this forward transition are ‘E9A> and ‘EQB>, respectively.
Since the potential barrier Vg in the ground state is generally high, the transition takes
place through the lower potential barrier V,, in the excited state after excitation from

‘ EgA> to ‘ EexA>. De-excitation from ‘ EexB> to the final state ‘ EgB> takes place after

this transition.

Transition
Forward >

Backward

\ e S /\E
|EexA> r Ve = [ exB)

Energy

]EgB)

State B

State A

Fig. 14 The energy level diagram of the two-level two-state model.

The TLTS model can describe the DPP-assisted annealing rate, depending on

which state the electron is in:
State A: State A corresponds to the region in the Si crystal where the spatial distribution

of B atoms is not suitable for generating DPPs. Therefore, the electron in ‘EexA>
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generates Joule heat. On the other hand, the electron in ‘EgA> is excited by absorbing

the irradiated light, and, as a result, Joule heat is also generated. Because of the Joule
heat generated in these cases, the annealing rate is higher in state A.
State B: State B corresponds to the region in the Si crystal where the spatial distribution
of B atoms is suitable for generating DPPs. Since electron—hole pairs can radiatively
recombine in this case, the light irradiated during the DPP-assisted annealing triggers
stimulated emission. As a result, the annealing rate is lower in state B because the
stimulated emission optical energy dissipates from inside the Si crystal to the outside.
Due to the difference in the annealing rates in states A and B, the spatial
distribution of B atoms changes autonomously. When it reaches that of state B, the DPP-
assisted annealing is completed, and the Si-LED is thus fabricated. It has been

experimentally confirmed for a GaP-LED that the external electric and optical fields
applied during the DPP-assisted annealing drastically decreased the value of V,, "

This decrease is the reason why the spatial distribution of B atoms was
efficiently modified by the DPP-assisted annealing even at low temperature, as described
in Subsection 2.1 (573 K). In other words, the outstanding technical advantage of the
DPP-assisted annealing is that it does not require any high-temperature electric furnaces,

which have been needed for conventional thermal annealing.

* In the absence of an external field, the value of Vex that electrons in the doped Zn atoms must exceed

to make a transition inside the GaP crystal was 0.61 eV. The value obtained when Ga sites were substituted
via the kick-out mechanism was 1.64 eV [26]. However, with the external fields, it was estimated to be

as low as 0.48 eV [23].

6. Optimum condition for DPP-assisted annealing

This section presents the optimum condition for DPP-assisted annealing, i.e., the
optimum ratio between the electron injection rate and the photon irradiation rate for

DPP-assisted annealing [23]. First, the electron is assumed to be in the excited or ground

state of state B (‘ EexB> or |EgB >) in Fig. 14 as a result of DPP-assisted annealing, i.e.,
19



as a result of the forward transition from state A to state B. Next, the solid, broken and
dotted arrows (a)—(c) in Fig. 14 represent the possible paths of the electron for de-
excitation, excitation, and backward transition via photon emission and absorption,

which may subsequently occur by continuing the DPP-assisted annealing.
Path (a): The electron in ‘EexB> can emit a photon via spontaneous or stimulated

emission. Thus, it de-excites to | E gB> without a transition back to state A.

Path (b): If the electron in ‘ EexB> does not emit a photon, it transitions back to ‘EexA>

in state A, and subsequently de-excites to | E, A> via nonradiative relaxation.
Path (c): The electron in |EgB> is excited to ‘EexB> by absorbing a photon. It

subsequently transitions back to ‘EexA> in state A and de-excites to |EgA> via

nonradiative relaxation, as in path (b).
In the case of path (a), the spatial distribution of B atoms remains unchanged

even though DPP-assisted annealing proceeds, because both the initial and final states

(‘ EexB> and |EgB>) are in state B. However, in the case of paths (b) and (c), the final
state |EgA> is in state A, and this spatial distribution easily changes as DPP-assisted

annealing proceeds. Thus, to confine the electrons in state B, paths (b) and (c) must be
blocked to prevent the backward transition.

Noting that a photon causes an electron to emit another photon via stimulated
emission, a promising method for blocking the paths is to set the ratio of the electron
injection rate and the photon irradiation rate to 1:1, which corresponds to the optimum
condition for the DPP-assisted annealing. If the electron injection rate is higher than the
photon irradiation rate, the excess electrons do not emit photons via stimulated emission
but escape through path (b). On the other hand, if the photon irradiation rate is higher
than the electron injection rate, the excess photons do not cause electrons to emit photons
via stimulated emission but allow the electrons to escape through path (c).

Experiments have been carried out to confirm this optimum condition by using
a GaP-LED as a specimen [23]. The experimental results showed that the rate of increase

in the emitted light intensity due to the DPP-assisted annealing took the maximum value
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when the ratio between the photon number and the electron number was 1.3:1, which is
approximately 1:1. This clearly shows the optimum condition claimed above. This
optimum condition has been theoretically reproduced by a stochastic model of the spatial
distribution of B atoms, which was controlled by the DPPs [11].

This optimum condition suggests that conventional thermal annealing, i.e., by
heating the sample in an electric furnace, is not compatible with fabricating novel
devices having photon breeding features even if the furnace temperature can be
increased to much higher than the value given in Subsection 2.2 (573 K). DPP-assisted

annealing is the only suitable fabrication method.

g
S
5
4 -
? npholon / Peotectron = 1
Nelectron

X

Fig. 15 Phase diagram for representing the area in which the rate of increase in the emitted light intensity

due to the DPP-assisted annealing is high.

The gray cone in the phase diagram of Fig. 15 represents the area in which the
rate of increase in the emitted light intensity due to the DPP-assisted annealing is high,

which was empirically illustrated through experiments and the discussion on the
optimum condition above. Here, Nyeon and Npge, are the electron injection rate and
the photon irradiation rate, respectively. It should be pointed out that the rate of increase

is the largest when N0 / Nyeeron =1, @s was discussed above. Inthis figure, E; is the

magnitude of the dissipated optical energy. It is the magnitude of the energy of the
stimulated emission, which is emitted from the electron that jumped into the DPP field.
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Since this light propagates out from the Si crystal, the diffusion rate of the B atoms
locally decreases around this DPP field, by which the spatial distribution of the B atom
pairs is autonomously controlled to promote the DPP-assisted annealing.

Anovel theory is required since one of the major requests from experimentalists
is to find the optimum condition for realizing the highest efficiency of creation and
measurement of DPs. It is expected that Fig. 15 will serve as a reference to find such an

optimum condition.

7 Summary

After reviewing fabrication of Si-LEDs using a novel DPP-assisted annealing method,
their unique light emission spectral profiles were presented in the wavelength range 900—
2500 nm, including novel photon breeding features. The highest optical output power

demonstrated was as high as 2.0 W, which was 103-times that of a conventional LED.
It was experimentally found that the B atoms formed pairs as a result of the

DPP-assisted annealing, and the length of these pairs was three-times the lattice constant
of the Si crystal. The pairs extended in a plane perpendicular to the propagation direction
of the light irradiated during the DPP-assisted annealing. These B atom pairs were
confirmed to be the origin of the photon breeding. It was also found that photon breeding
took place with respect to photon spin. Recent measurements confirmed that the B atom
pairs tend to form a chain-like configuration.

A phenomenological two-level two-state (TLTS) model confirmed that the
external electric and optical fields applied during the DPP-assisted annealing drastically
decreased the height of the potential barrier between the two states. This decrease was
the reason why the spatial distribution of B atoms was efficiently modified by the DPP-
assisted annealing even at low temperature. The TLTS model and a stochastic model
confirmed that the optimum DPP-assisted annealing was realized by setting the ratio of
the electron injection rate and the photon irradiation rate to 1:1, which was also
confirmed experimentally.

A phase diagram was presented as an aid for developing a novel theory for

finding the optimum condition for the highest efficiency of creation/measurement of

DPs and for realizing more efficient and higher-power Si-LEDs.
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Abstract: This article describes experimental estimation of the maximum size of a dressed
photon (DP) by a photochemical vapor deposition method that has been used for forming a
metallic zinc nanoparticle (Zn-NP) on a sapphire substrate. Because of the localized feature
of the DP and of a unique non-resonant DP—molecule interaction, this method succeeded in
excluding the contribution of the propagating light in the Zn-NP formation. The size of the
deposited Zn-NP increased with increasing deposition time. Finally, the size saturated to a
value that was independent of the radius of curvature of the fiber probe tip and the
wavelength of the light used for irradiating the end of the fiber probe. From these results, it

was concluded that the experimentally estimated maximum size was 50—70 nm.
1. Introduction

A dressed photon (DP) is a quasi-particle representing the coupled state of a

photon and an electron—hole pair in a nanometer-sized material

(nanoparticle: NP) [1]. It has been confirmed that the size ay, of a DP is

equivalent to the size a,, of the NP on which the created DP is localized [2].

This size is much smaller than the wavelength 1 of conventional
propagating light.

Because of the unique localization feature mentioned above and



because ay, <A, a variety of application technologies developed so far [3]

have realized an ultrahigh spatial resolution beyond the diffraction limit of
conventional optical technologies. To realize further developments in these

technologies, it is essential to estimate the minimum and maximum sizes of

the DP (8, i, and 8pp s > respectively). A reasonable estimate is to assume

that the minimum size ay;,;, 1s equivalent to the size of an atom &, . This

1s because a fundamental interaction takes place between a photon and an

electron in an atom for creating the DP".

On the other hand, the maximum size a,, has never been

estimated. The advent of a novel theory is expected to make this estimation

possible. To this end, this article describes experimental estimations of the

maximum size ayp ., by using the localized features of the DP mentioned

above and also a unique feature, called non-resonant DP-molecule

interaction.

*)

Experiments on DPs have been carried out by using ultraviolet light, visible light, or infrared
light as a light source for creating the DP. Some infrared wavelengths can excite molecular
vibrations, which can be treated by a theoretical model known as the dressed-photon—phonon
model [4]. Microwaves have also been used to realize a spatial resolution as high as A /4000,
where the wavelength A was 12 cm [5]. Here, it should be noted that microwaves do not
interact with the electron in the atom even though it can excite a molecular rotation. Thus,

the experiments using microwaves are not compatible with the present study described here.

2. Methods for experimental estimation

Photochemical vapor deposition (PCVD) based on DP-molecule interaction

was adopted as the most appropriate method to experimentally estimate the

maximum size app - Lhis is because the size, conformation, and position of

the DP were transcribed to those of an NP formed on a substrate as a result

2



of deposition. As shown in Figs. 1(a) and (b), this method involved molecular
dissociation by the DP and subsequent deposition of the dissociated atoms on
the substrate [6,7].

Incident light Incident light
Sharpened fiber— Sharpened fiber—
Metallic film —s r Fiber probe Metallic film —» r Fiber probe
Dressed photon ——v\'/ .. 3 Dressed photon ———-\'/ .. =
P 1 " L Molecules . S “ L Molecules

ee .
e e @ +—— Deposited atoms

1 1
Substrate Substrate
(a) (b)

Fig. 1 Photochemical vapor deposition based on DP—molecule interaction.

(a) Dissociation of molecules. (b) Deposition of the dissociated atoms.

First, Zn(CsHs)2 (DEZn for short) was adopted as a specimen molecule.
Gaseous DEZn molecules were filled into the vacuum chamber. A fiber probe
and a substrate were also installed in the chamber. A DP was created on the
tip of the fiber probe by irradiating the end of the fiber probe with propagating
light. The DEZn molecules were dissociated when these freely flying
molecules jumped into the field of the DP. The dissociated Zn atom
subsequently landed on the substrate. After a very short migration on the
substrate, the atom was adsorbed on the substrate. By repeating these
processes, the number of adsorbed Zn atoms increased, resulting in the
deposition of Zn atoms and the formation of a nanometer-sized metallic zinc
nanoparticle (Zn-NP) on the substrate. Since the DEZn molecules were
dissociated in the field of the DP, the size, conformation, and position of the
formed Zn-NP were equivalent to those of the DP.

In the case of dissociating the DEZn molecules by conventional
propagating light instead of by a DP, the wavelength of this light had to be
shorter than 270 nm (photon energy 4.59 eV) for exciting an electron in the



DEZn molecule. To estimate ay; ., , the DEZn molecules must be dissociated

only by the DP on the tip of the fiber probe (Fig. 1(a)), for which the
contribution of the propagating light used for creating the DP must be
excluded. To achieve this, three ingenious tricks were employed:

(1) The first was a photochemical trick: The wavelength of the propagating
light for creating the DP was set longer than 270 nm. As a result, it was
expected that the DEZn molecules would not be dissociated even if irradiated
with propagating light, which scattered out from the tip of the fiber probe.
Instead, it was expected that the DP on the tip would dissociate the DEZn
molecules due to the non-resonant DP-molecule interaction. It has been
confirmed that this novel dissociation originated from the multi-step
excitation of the electron via molecular vibration energy levels, triggered by
the DP [6,7].

(2) The second was an instrumentational trick: A primitive bare fiber probe
was employed on which no metallic films were formed. As shown in Fig. 2(a),
a conventionally used fiber probe was fabricated by sharpening a fiber with
an advanced selective chemical etching method [8], resulting in high-
precision control of the nanometer-sized tip diameter, cone angle, and
throughput of the DP creation. This high precision was essential to control

the size, conformation, and position of the created DP on the tip for estimating

8pp viax - The tapered part of the sharpened fiber was subsequently coated with

an opaque metallic film in order to prevent the scattered propagating light
from leaking out from the fiber probe. In contrast, the fiber probe used here
was fabricated by a very primitive method. That is, the fiber was heated and
mechanically pulled to sharpen it. As a result, high-precision control of the
size, cone angle, and throughput were not expected. In addition, the probe
was not coated with a metallic film (Fig. 2(b)), allowing the scattered
propagating light to leak from the taper and tip of the fiber probe. Even when
using such an unreliable fiber probe, the contribution of the propagating light
was expected to be excluded because of its long wavelength, as discussed in
(1) above.

(3) The third was again a photochemical trick: For further insurance, the
DEZn molecules were replaced by zinc-bis(acetylacetonate) (Zn(acac)s for
short) molecules [9,10]. Zn(acac)s is known to be an optically inactive molecule,

4



and thus, it has never been dissociated by propagating light. However, it was
expected here that it could be dissociated by the DP via excitation of a
molecular vibration for depositing the dissociated Zn atoms on the substrate.

This 1s also the application of a non-resonant DP—molecule interaction.
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Fig. 2 Structures and scanning electron microscopic images of fiber probes.

(a) A high-precision fiber probe, which has been popularly used for high-spatial-resolution
microscopy and spectroscopy. ap is the radius of curvature of the tip. (b) A primitive fiber

probe, which was used for the present experiments.
3. Estimated results and discussion

Figures 3(a)-(c) show images of a three-dimensional Zn-NP formed on a
sapphire substrate by dissociating DEZn molecules; these images were
acquired by using an atomic force microscope (AFM) [7]. The wavelengths A
of the propagating light for creating the DP were 325, 488, and 684 nm,
respectively. In the case of Fig. 3(a), this wavelength was close to the value of
270 nm given in Section 2. Thus, the contribution from the conventional
propagating light might not have been sufficiently excluded. Tails
represented by white broken curves in this figure were attributed to this

contribution.



(a) (b) ()

Fig. 3 AFM images of three-dimensional Zn-NPs formed on a sapphire substrate.
The DEZn molecules were dissociated by the DP. The wavelengths of the propagating light
for creating the DP were (a) 325 nm, (b) 488 nm, and (c) 684 nm.

In contrast to Fig. 3(a), the wavelengths of the propagating light in
Figs. 3(b) and (c) were sufficiently longer than 270 nm, which means that the
contribution from the propagating light was sufficiently excluded due to
tricks (1) and (2) described in Section 2. That is, the DEZn molecules were
dissociated only by the non-resonant DP-molecule interaction, resulting in
AFM tail-free images of the Zn-NPs. The full width at the half-maximum
(FWHM) of the AFM images were 45, 50, and 40 nm*, respectively, in Figs. 3
(a)-(c), which were independent of the wavelength 1 of the propagating light.
Thus, it was confirmed that these values corresponded to the size of the DP
used for the present PCVD.

*)

It should be noted that these values contained a systematic error originating from the spatial
resolution of the AFM, which corresponded to the tip size of several nanometers of the AFM
probe. Thus, the corrected values of the FWHM, obtained by subtracting this error, were
slightly smaller than 45, 50 , and 40 nm.

Figure 4 shows images of the three-dimensional Zn-NPs formed on a
sapphire substrate, where DEZn molecules were replaced by Zn(acac)s
molecules based on tricks (2) and (3) in Section 2 [9,10]. The wavelength A
of the propagating light for creating the DP was 457 nm. In the case of Fig.
4(a), low-power (65 W) propagating light entered the fiber in order to form
a small Zn-NP on the substrate by maintaining the deposition rate
sufficiently low. Because high-precision control of the deposition time was
ensured by this low deposition rate, an FWHM for the Zn-NP as narrow as 5—
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10 nm was realized, which was the smallest value realized by the present
PCVD method. The height was as low as 0.3 nm, which corresponded to the
thickness of two layers of Zn atoms, demonstrating the high precision of

deposition.

Fig. 4 AFM images of three-dimensional Zn-NPs formed on a sapphire substrate.
The Zn(acac)2 molecules were dissociated by the DP. The wavelength of the propagating light
for creating the DP was 457 nm. (a) The power of the propagating light incident on the fiber
probe was 65 g W. The irradiation time was 30 s. (b) The power of the propagating light

incident on the fiber probe was 1 mW. The irradiation time was 15 s.

By increasing the incident propagating light power (1 mW), a larger

Zn-NP was formed, from which the maximum size ag,, of the DP was

accurately estimated. Figure 4(b) shows the result. The value of the FWHM
was 70 nm, which was close to the values in Fig. 3.

Figure 5 shows the dependence of the rate R of depositing Zn atoms
on the FWHM of the formed Zn-NP. Here, the value of the FWHM increased
with increasing deposition time [11]. The DEZn molecules were dissociated
by irradiating the end of the fiber probe with 325 nm-wavelength propagating
light. This figure shows that the rate R took the maximum when the FWHM

was equal to the tip diameter 2a/ (ap =4.4 nm: tip radius of the fiber probe

tip). This was due to the size-dependent resonance of the DP energy transfer
between the tip of the fiber probe and the formed Zn-DP [12]. Further
increases in the deposition time decreased R while the size of the Zn-NP
increased. Finally, the size and conformation of the Zn-NP became stable,

independently of the value of a . As a result, the value of the FWHM
7



saturated. Figures 3 and 4(b) show the profiles acquired after this
stabilization.

15F °®

R (atoms/s/W)

FWHM (nm)

Fig. 5 Dependence of the deposition rate R on the FWHM of the Zn-NP.
The wavelength of the propagating light for creating the DP was 325 nm. Closed circles and
squares represent the measured values when the powers of the light incident on the fiber
probe were 5 1 W and 10 u W, respectively. The downward arrow represents the value of
2a, .

The FWHM values in Figs. 3 and 4(b) were 50-70 nm, including

systematic errors due to the spatial resolution of the AFM. They were

independent of a,and the wavelength 1 of the light used for irradiating the

end of the fiber probe. A larger FWHM was not realized even by increasing
the deposition time. From these unique results, it was concluded that the

experimentally estimated maximum size &, of the DP was 50-70 nm.

4. Summary

In order to stimulate the advent of a novel theory for describing the maximum

size app e Of @ DP, this article described experimental estimation of ayp .

by PCVD for dissociating DEZn molecules and Zn(acac)z molecules in order
to form a Zn-NP on a sapphire substrate.

The experimental methods and results are summarized as follows:
(1) The present PCVD method excluded the contribution of the propagating

8



light even though this light leaked out from the fiber probe. This exclusion
was ensured by using a non-resonant DP—molecule interaction.

(2) The size of the Zn-NP increased with increasing deposition time, and
finally, the size and conformation of the Zn-NP became stable. As a result, the
value of the FWHM saturated.

(3) The saturated value of the FWHM was independent of the tip radius a,

of the fiber probe and the wavelength 1 of the propagating light used for
creating the DP.

From the results above, it was concluded that the experimentally

estimated maximum size ap,, of the DP was 50-70 nm.
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FIG. 1: Target materials under near- and far-field incidences: the former is exposed to the inci-
dent longitudinal and transverse electric fields simultaneously (the left side), whereas the latter is

exposed to only the transverse field (the right side).

Under non-resonant conditions in the optical near field, non-metallic materials cause
various phenomena not observed in conventional optics, such as highly efficient light emis-
sion from indirect-transition-type semiconductors (LED[1, 2| and Laser[2, 3]), chemical
reaction with insufficient photon energy (chemical vapor deposition[4], optical near-field
lithography[5], optical near-field etching[6]), frequency up-conversion[7, 8|, non-adiabatic
effect beyond forbidden transition (local energy concentration[9], nano-photonic gate
device[10]), and gigantic magneto-optical rotation of the LED[2, 11, 12]. Theoretically,
dressed photons, namely, the localized electromagnetic field easily coupled with phonons,
were introduced to allow non-adiabatic transitions[13-15].

This Rapid communication focuses on another fundamental role of the non-resonant
condition in near-field optics (NFO) with non-metallic materials. We examine the one-
electron two-level system close to both the light source and the observation point under long
wavelength approximation (LWA), and find it a logical fallacy to regard the total electric field
as causing the response under the non-resonant condition. In contrast, under the resonant
condition or the far-field observation condition, the electric field works as expected. These
findings originate from the non-relativistic nature of the system and should be applicable in
actual optical systems with non-metallic materials. For the readability, calculation details
are given in the last part of this paper.

Suppose a small-scale material is placed in the vicinity of a nanostructure, which functions
as a light source (Fig.1). In such a system, under the NF incidence condition, the target

material is exposed to longitudinal and transverse electric fields simultaneously, whereas



in a system under the far-field incidence condition, the target material is exposed only to
the transverse field, which survives far from the light source. Therefore, the coexistence of
longitudinal and transverse electric fields distinguishes such a system under the NF incidence
condition from that under the far-field incidence condition.

Here, the longitudinal electric field originates from the charge density on the nanostruc-
ture, obeys Coulomb’s law, and has a non-radiative nature to localize around the nanostruc-
ture. On the other hand, the transverse electric field originates from the transverse current
density on the nanostructure, obeys the Ampere-Maxwell law and Faraday’s law, and has
a radiative nature allowing it to propagate far from the light source, accompanied by the
magnetic field. (The longitudinal current density is determined via the charge conservation
law, once the charge density is known, and is not an independent source.) Therefore, the
two incidences coexisting in an NF optical system have distinct properties.

Furthermore, owing to the non-relativistic nature of the system, the scalar and vector
potentials appear in a different manner in the Hamiltonian, which governs the electron re-
sponse, for example, (13) of Calculation details (i) in the last part of this paper. Considering
that the scalar and vector potentials under the Coulomb gauge represent the longitudinal
and transverse electric fields, respectively, one may confirm that the two types of incidences
in NFO cause different responses. Now our question is the following: under what condition
can we observe these differences?

Before proceeding with the analysis, let us first classify the optical systems. The two
systems under near- and far-field incidence conditions in Fig.1 are subdivided into two classes
depending on the near- or far-field observation condition. These four classes are listed in
Table I, together with a summary of the results mentioned below. In particular, the systems
of (I') and (') are the limiting cases of null longitudinal incidence of the systems (I) and
(I), respectively. Thus, in the systems (I') and (II'), the longitudinal response vanishes and
the difference in response may not be observed. In the following, therefore, we focus mainly
on systems (I) and (II), in which longitudinal incidence exists.

Microscopic responses to longitudinal and transverse electric fields. Applying the
linear response theory and the LWA to the electron system of the target material on a small
scale, the induced charge and current densities (as a result of the response), Ap(r,t) and
Aj(r,t), are described as the total derivative with respect to the longitudinal and transverse

electric fields (as the cause of the response), AE®(0,t) and AE®(0,t), where 0 is the



TABLE I: Classification of optical systems by distance from the target material to the light source
and distance from that to the observation point, together with a summary of the results; the

validity of the electric field as the cause of the response.

Near-field observation |Far-field observation
Source:Ap and Aj Source: Aj

Near-field incidence : (I) NF optical system | || (I) NF optical system
AE®) + AE®) non-resonant / resonant non-resonant / resonant
Validity of the electric field / OK OK / OK

Far-field incidence : (') NF optical system ||| (I')conventional optical system
AE® non-resonant / resonant ||| non-resonant / resonant
Validity of the electric field OK / OK OK / OK

representative position in the electron system under the LWA:

Ap(r,t) = X270 (r,w) AEL(0,1) + 3070 (r,w) AEP(0,1), (1)
Aji(r,t) = 3O (r,w) ABD(0,8) + x5 (r,w) AEY(0,1) (2)

J

where the partial derivative coefficients, x:'(r,w)’s are susceptibilities (response func-

tions), and Einstein’s rule is used for the summation over the vector indices, for example,

X;H(f (r,w) AE 5 ZXJ (r,w) AE ) (O,t) . In (2), the time derivatives of the

two types of electric ﬁelds, namely, AEj ( ,t) and AE](t)(O, t), are regarded as the causes,
instead of the two types of electric fields themselves. The magnetic response vanishes in
the leading order under the LWA ; see Ref.[16]. The derivation of (1) and (2) is given in
Calculation details (i).

For simple evaluation of the susceptibilities in (1) and (2), suppose we have a spinless one-
electron system with two levels, the ground and excited states in the non-perturbed system
with eigenenergies, hwy and Aws, and orbitals, po(r) and ¢;(r), respectively. Those orbitals
are assumed to be bound states expressed by real functions, carry well-defined and distinct
spatial parities (even and odd parities), and form the normalized orthogonal complete set.
The excitation energy is hAw; = hw; — hwy > 0; this finite excitation energy means that

the target is a non-metallic material, such as a molecule, nano-structured semiconductor

4



and insulator.
The susceptibilities in (1) and (2) are derived in Calculation details (ii), and those leading

to the induced charge density result in the following:

¢ t o1
) =T ) = 260 5 e Dy e (). (3)
where . EhAwl _ excitation energy . and (4)
hw photon energy
Di = d37‘ ©®1 (I') T (po(T) . (5)

This means that the responses to the longitudinal and transverse electric fields are common,
such that the induced charge density has a linear relationship with the total electric field,
namely, Ap(r,t) = ijf_(é) O w) (AEJ@(O,t) + AEJ@(O, t))

The susceptibilities leading to the induced current density are not so simple and result

in the following:

¢ 1 1

) = o s D G w)n(s) — () isal) (6)
WO () =P s O, w) — L0 @gﬁwdw¢aw. (7)

The susceptibility to the transverse electric field, (7), is composed of two terms. The first
term, namely, the resonant term, includes the energy denominator enhanced under the
resonant condition, 7 ~ 1, as in the susceptibility to the longitudinal electric field, (6). The
second term, namely, the non-resonant term, does not include such a resonance factor.

Equal responses under the resonant condition. Under the condition n ~ 1 in all cases
in Table I, (7) is dominated by the resonant term (the first term) over the non-resonant

term (the second term) and asymptotically equals (6).

O, w) = x5O (r,w). 8)

Equation (8) together with (3) reveal the equivalency of the responses to the longitudinal
and transverse electric fields, so that the total electric field is regarded as the cause of the
response in any optical system under the resonant condition listed in Table I .

Equal responses under the far-field observation condition. In the system (II) and
(I') in Table I, the far field to be observed is insensitive to the details of the source but is

determined by the spatial average of the source. Under the LWA, such an average can be



achieved by the spatial average of the susceptibilities. Detailed calculations are shown in

Calculation details (iii); the results are as follows.

XOrw = Y (rw) =0, 9)

(0 =0 5, L0 1
X (0w) =Xy (W) = 0 S ST e

(10)

where the overline represents the spatial average and V is the volume of the target material.
From (9) and (10), one may not observe different responses to the two types of incidences
under the far-field observation condition. The null response represented in (9) is reasonable
because the induced charge density yields the longitudinal electric field, which has a non-
radiative nature and vanishes in the far-field regime.

Unequal responses under the non-resonant, NF incidence, and NF observation
conditions. The different responses claimed in the beginning of this Rapid communication
may be detected only in the system (I) in Table I under the non-resonant condition, which is
just the compliment to the popular optical systems under the resonant condition and/or the
far-field observation condition. In the NF optical system (I) with a non-metallic material un-
der the non-resonant condition, the total electric field is not the cause of the response; there-
fore, the response may not be described by the macroscopic constitutive equation (MCE),
namely, the linear relationship between the polarization and ”electric field” via permittivity,
and the microscopic susceptibilities are essential to treat separately the longitudinal and
transverse incidences.

In NFO, the response to the longitudinal electric field is discussed in Chap. 5 in Ref.[16]
and Chap. 9 in Ref.[18]. The present work is a further comparison of the two responses,
considering the non-resonant condition.

The present model is very simple and the responses may be modified in a many-electron
system or a low-symmetry system. However, the difference in the responses to the two
types of electric fields originates in the non-relativistic nature of the system (as stated in the
beginning of this Rapid communication), and should survive in actual NF optical systems
with non-metallic materials (the materials with finite excitation energy). Actually, there is
no reason for equating the two responses in the many-electron and low-symmetry systems.
Therefore, one may infer a guiding principle to highlight NF optical phenomena: under the
non-resonant condition and simultaneous NF-incident and NF-observation conditions, non-

metallic materials bring about NF-specific optical phenomena that may not be described



by the MCE in terms of the electric field and the permittivity. Some of the experiments
mentioned in the beginning of this paper were performed under such conditions; thus, we
will analyze them in detail in future investigation.

A remark on applying the finite differential time domain (FDTD) method to an
NF optical system. The MCE in terms of the permittivity has been widely employed
to calculate the optical near field in the FDTD method[17]. One may notice that the
permittivity in the FDTD method carries a simple spatial dependence and leads to some
quantitative error. Actually, the microscopic susceptibilities, for example, (3), (6), and (7),
have rippling spatial distributions originating from the orbitals.

In the case of the NF optical system (I) in Table I with a non-metallic material under

the non-resonant condition, the situation is more serious because the concept electric field
is not available, such that it is a logical fallacy to use the MCE. Thus, a novel simulation
method is necessary.
NFO and many-electron problem. Why has the comparison of responses to the two
types of electric fields not been addressed in NF optical theory? First, in the long history of
optics, the NF optical system (I) in Table I under a non-resonant condition has been out of
focus. Such a system could not be resolved until the technical difficulty of NF observation was
overcome. Additionally, resonance phenomena continue to attract attention. Furthermore,
even in NFO, there has been less emphasis on non-metallic materials, as opposed to metallic
materials, which are essential for plasmonics.

The second reason is that the ordinary Hamiltonian for a many-electron system does
not include the longitudinal electric field, which is rewritten to the two-body Coulomb
interaction and eliminated. With this Hamiltonian, the response to the longitudinal electric
field incidence accompanies the Coulomb interaction, and is difficult to analyze. Therefore,
NFO is inevitably related to the many-electron problem; however, this has not been well
recognized for a long time. This study considered a one-electron system, avoiding the many-
electron problem. In future studies, the present scenario will be extended to a many-electron
system and nonlinear response, overcoming the many-electron problem, and applying the
findings to various phenomena mentioned in the beginning of this Rapid communication.

To the best of our knowledge, the present near-field optical system with non-metallic
material under the non-resonant condition is the third example that cannot be described

in terms of electric field and/or magnetic field, after the superconductor system with the



Meissner effect and the electron system with the Aharonov-Bohm effect. The diversity of
non-metallic materials including semiconductors, dielectrics, and magnetic materials has
been utilized in conventional optics. We believe that focusing on non-metallic materials in
NFO promotes further development both conceptually and technically.

Calculation details. Here we provide the calculation details, including the derivation of

the unfamiliar relationship (28) between two types of dipole transition matrix elements.

(i) Derivation of the microscopic constitutive equations, (1) and (2). The incident scalar

and vector potentials, A¢(r,t) and AA;(r,t), are assumed to be monochromatic with the

angular momentum w, and are expressed using the Coulomb gauge and LWA, as follows:

A(r,t) = Ad(r) coswt = (A¢p(0) — AEY(0) - r) coswt, (11)
1
AA(r,t) = AA(r)sin(wt + &) = —EAE(“(O) sin(wt + &) , (12)
where and ¢ is the phase difference between the two incident potentials. The nanostructure

is assumed to be a robust light source, which is not affected by the target material, and the

electromagnetic field is assumed to be a classical field.

Using a spinless one-electron system, let us evaluate the induced charge and current
densities caused by the coexisting incidences of the scalar and vector potentials. The total

Hamiltonian is as follows:

[ (;%@ - qA,-(x(t),t)) (7@3%@ - qA,-(x(t),t)) +aqo(x(1),1),  (13)

2m

where ¢ is time, x(t) is the position of the electron, and (= —e), m are the electron charge

and mass, respectively. The perturbation Hamiltonian is given by
[ (ot 06(r.0) = i A4 ) (14)

where p(r,t), ji(r, ) are the Heisenberg operators of the charge and current densities defined

plr. 1) = 09%(e — x(1). (15
it t) = 22 (3 — 0Ax(0.0)) 80 = x(0) + % = x(0) (T — aix(0,1))

(16)



The linear response theory leads to the operators of the induced charge and current densities,

as follows:

t) :/_dtl /d37‘1 {% (PO (e, 1), pO(ry, 11)] Ag(ry, 1)

1r. A
T [P(O)(rat) ; Jz(lo)(rhtl)] AA; (1'17751)} ; (17)

]

A,]z /dtl /d3T1 { AZ ( ,t) s ﬁ(o)(rl,t1>:| A¢(r1,t1)

3 00 10w w)] Ao | - 506 0aa 0.
(18)
where p(¥ and 5(0) are the charge and current density operators, respectively, in the non-

perturbed system. The last term in (18) originates from the non-relativistic nature of the

system and is needed to maintain the charge conservation law.

Evaluating the expectation value using the ground state and substituting (11) and (12)
leads to (1) and (2), in which the causes of the responses are the two types of electric fields

and their temporal derivatives, defined as

O] — (0 (t) — ()
AFE;7(0,t) = AE;’(0)coswt, AE(0,t)= AE;”(0)cos(wt + &), (19)
. 0 . 0
AED(0,1) = EAEj@ (0,1), AEY(0,1) = EAEj(.“(o, t). (20)

In the above, no magnetic response appears because it is the higher order in the LWA[16
19]. Cho derived a Taylor series of the non-local response function[20] under the LWA, and
assigned the electric permittivity and magnetic permeability in the MCE as the term of
order O(ka)® (the leading order) and O(ka)?, respectively, where ka < 1, 27 /k is the light

wavelength, and a is the representative size of the material.

Furthermore, he pointed out that the MCE is irrational because the separability of the
electric and magnetic responses and the term of order O(ka)! appears in a chiral symmetric
system, including a NF optical system with a low-symmetric nanostructure. The present
work is concerned with another type of irrationality, which appears in the electric response

(the leading order from the viewpoint of Cho) in NFO under a non-resonant condition.

(ii) Derivation of the expressions for susceptibilities, (3), (6) and (7).

To obtain these formulas using the two-level model, we take the expectation values of (17)

9



and (18) using the ground state, ¢y(r), and insert the projection operator [ the left side of
the second equation in (21)], assuming that the two orbitals are real functions, and form the

normalized orthogonal complete set:
JErenen) =dnn. Y eneon) = £ 1), 1)
where ,,(r) satisfies,
HOp, (r) = hwy om(r), (m=0,1). (22)

Having real orbitals infers even temporal parity, such that there is a null magnetic field
in the non-perturbed system or null vector potential in the non-perturbed Hamiltonian.
Furthermore, we use the well-known linear relationship between the two types of dipole
transition matrix elements,

Ci = /d?’r (Oip1(r)po(r) — @1(r)0ipo(r)) = ii—?hAwl D;. (23)
Equation (23) is derived from the matrix element of the Heisenberg equation for dipole

charge density:

o

1
Ry () _
ot '’ (x,2) i

rpO e, t), 2O | (24)

1(0)
using p\% (r,t) = e~ o 5O (r,0)e

A0)y
+ ih

, the projection operator, (21) and (22).

(iii) Derivation of the spatial average of the susceptibilities, (9) and (10). These following
replacements in (3), (6) and (7) lead to (9) and (10):

1

ama) — 3 [Eramem =0, 2
Bpr(r)enlr) — aE0nlt) 5 [Erdiee)an() - p () = 56 (20
aoltonlr) — 3 [Erea =5 (27)

To derive (10), we additionally use the trade-off relationship between the two types of dipole

transition matrix elements,
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This is effective in the two-level system with well-defined parity and derived from the

quantum-mechanical commutation relationship:

]

Inserting the projection operator between r; and %‘8]-, and eliminating the null integrals
caused by mismatched parity result in (28). From (23) and (28), D; and C; are specified as

1 h
D= = 30
Ci vV 2m hAwl ( )

(We do not use (30) in this paper.)
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Chapter 1

Historical Review of Dressed Photons:
Experimental Progress and Required
Theories

Motoichi Ohtsu

Abstract First, this article reviews the experimental and theoretical studies of
dressed photons (DPs), carried out in the last three decades. It is pointed out that
future theoretical studies can be developed by following three steps. Second, it is pro-
posed how to proceed in the first and second steps by describing a unique DP energy
transfer process. As an application of this transfer process, novel functional devices
are demonstrated. The DP energy transfer in these devices is shown to exhibit an
autonomous spatial evolution feature. A temporal evolution feature is also revealed.
Another application is a highly efficient optical energy conversion film that gives a
drastically increased electrical power generation efficiency of a silicon solar battery.
Lastly, in order to identify the requirements for future theoretical studies, this article
reviews how to proceed in the third step by employing a fiber probe. Among these
requirements, an essential requirement is to describe the autonomy mentioned above
and also the hierarchy observed in DP measurements. To meet the requirements,
novel theoretical approaches are reviewed for developing a new field known as off-
shell science. These approaches are based on Clebsch dual field theory, the quadrality
scheme in category theory, and a novel measurement theory.

1.1 Introduction

The dressed photon (DP), a novel form of photon created in a nanometer-sized space,
has been referred to as an optical near field, and the science for dealing with this type
of photon has been called near field optics. The history of near field optics is long
and can be classified into older and modern times, based on the great differences
in the concepts, principles, and methods of studying the DP. The older time started

M. Ohtsu ()

Research Origin for Dressed Photon, c/o Nichia Corp., 3-13-19 Moriya-cho,
Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
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Abstract

Paradoxical appearance of negative metrics in the processes of emergences will
be analyzed from the viewpoint of Morse theory, induced representations and of
imprimitivity systems.

1 How to control inclusion relations

The essence of the present notes is to discuss the following issues which have been
triggered by the requirement for a theoretical framework to treat Dressed Photons:

how to fill the gap between Macroscopic Phenomena & Microscopic Theory,
on the basis of Micro-Macro Duality in Quadrality Scheme,
comined with Saddle-Point Instability,

Through the following examples, Lorentz symmetry/ Regge structure/ Dressed pho-

tons/ Coulomb modes/ Tomita-Takesaki modular theory for statistical mechnaics, con-
trolling mechanism will be explained on the basis of induced representations.

Existence of quantum modes with “indefinite metric” breaks the consistency of
theory at Micro level, as is well known by the difficulties caused by longitudinal pho-
tons. Therefore, one always tries to avoid longitudinal photons in QED.

However, this is in contradiction to the existence of Coulomb modes in Macro world!!

To understand such contradictory situations, we need first re-examine the concept
and phenomena of symmetry breaking.



2 Symmetry Breaking creates Symmetric Space

When symmetry of the system described by a group G is broken up to unbroken sub-
group H, a homogeneous space G/H emerges in sector classifying space. In this sit-
uation, G/H is shown to be a symmetric space with many nice properties [Hel],
according to the following criterion for symmetry breaking.

For this reason, induced representation I nd% [Mackey] to describe the broken
symmetry G on the sector classifying space G/H as a symmetric space has a strong con-
nection with automorphic forms and zeta functions playing important roles in number
theory.

The mutual relation between the quadrality scheme and the groups to describe sym-
metries can be depicted as follows:

.Sp.ec: =|G/H : Visible Macro
classifying space
Emergence 1] T
(Family of) _ : Micro-Macro
States - Algebra | A G boundaries t-ch
[ T
Dynamics | H : Invisible Micro: s-ch

2.1 Symmetry Breaking
General definition of symmetry breaking [I003]:

Definition (Symmetry Breaking): Let X be a C*-algebra describing quantum fields

with an automorphic action 7:X v~ G of a Lie group G on X and (7, $)) be a represen-
T

tation of X. If the spectrum Spec(3,(X)) of its center 3,(X) = 3(w(X)”) is pointwise
G-invariant (almost everywhere w.r.t. the central measure), the symmetry (G,7) on X
is said to be unbroken in (w, $) and broken otherwise.

The reason for complicated situations concerning symmetry breaking in QFT is due to
such a contrast between quantum systems with finite vs. infinite degrees of freedom:
while the use of a unitary representation U of G leads automatically to the unbroken
symmetry (which is always the case for systems with finite degrees of freedom), the very
non-existence of U realizable only in those with infinite degrees of freedom characterizes
the broken symmetry. This is the reason why we need G-actions both in C*- and W*-
versions in the above criterion for symmetry breaking.

2.2 Induced Representation from Unbroken to Broken

To streamline the discussion, we define “augmented algebra” [1003] by a (C*-)crossed
product X x (H\G) =: X of X with the dual (H\G) of (G/H), which allows uni-
tary implementation of broken G at the expense of non-trivial center 3,(X) with



Spec(3,r(2?)) = G/H in the representation of X. Thus the corresponding von Neumann
algebra m(X)” can be taken as (7 x U, )(X)” in the above definition. The existence of
a central spectrum as Spec(3x (é? )) = G/H suggests relevance of induced represen-
tations and imprimitivity [Mackey] involving the following exact sequences:

G
Indg

Rep(G/H) — Rep(G) <= Rep(H),

H = G-—-»G/H
(Ind§)*

The bigger group G can be viewed as a principal H-bundle over base space G/H =
Spec(3:(X)) as sector classifying space, and dual map (Ind$)* of Ind§ (sometimes
called “Wigner rotation”) plays the role of gauge connection.

2.3 Physical Meaning of Central Spectrum

Note here that the starting point of our present discussion is just a C*-dynamical system
X G given by C*-algebra X of quantum fields acted upon by a Lie group G of the
T

symmetry of the system. In a sense, however, spacetime background.of the dynamical
system X «\ G without being mentioned at the beginning, has emerged automatically

a
in the form of G/H as a result of the symmetry breaking from G to H. In this sense,
the essence of symmetry breaking is crucial and universal for general understanding of
the meaning of the above quadrality scheme for Micro-Macro duality.

For this purpose, we remark first such a crucial point that the center of repre-
sented algebra w(X')” consisting of Macro variables of the system as low energy modes
has such a spectrum as Spec(B,r()/(\)) = G/H. Its non-trivial motion is driven by the
action of G to exhibit the essence of symmetry breaking as the “infrared instability”.
Arbitrary representations of X are decomposed into the direct sum of G-unbroken fac-
tor representations and G-centrally ergodic non-factor representations (the latter ones
corresponding to symmetry breaking). according to which a “phase diagram” can be
drawn on the central spectrum.

2.4 Symmetry Breaking and Symmetric Spaces

Symmetry Breaking of Lie group G with Lie algebra g creates an interesting Micro-
Macro interface between Micro level invariant under unbroken Lie subgroup H with Lie
algebra f and visible Macro level of sector classifying space M = G/H.

M: formed in the emergence of condensed order parameters which parametrize the
so-called “degenerate vacua” arising from symmetry breaking.

According to the criterion for symmetry breaking, M = G/H becomes a symmet-

ric space (E. Cartan) [Hel] whose Lie structure m = g/h is characterized locally by the
relation [m,m] C b [RIMS2014].



Here commutator [m, m] of tangent vectors in M describes holonomy effect of the
curvature of M in loop motions on M. Since a trajectory forming a loop returns to
its starting point on sector classifying space M, net effect of the loop reduces to such
components of transformation group as fixing the sector unchanged, being contained in
unbroken symmetry corresponding to §, which can be expressed as Macro loops [m, m]
penetrated by Micro arrows in §.

2.5 Examples of Symmetric Spaces: Chiral symmetry, Lorentz
boosts & Second Law of Thermodynamics

1) Typical example of symmetry breaking yielding symmetric space structure can be
found in chiral symmetry of current algebra:

V.VI=V, [V, Al = A [A, Al =V,

(V € b: vector currents, A € m: axial currents).

2) For Lorentz group Ll_ as G with rotation group SO(3) as unbroken H, we can
find a symmetric space M = G/H = R3 given by the space of all Lorentz frames
connected by Lorentz boosts. In fact, relations [h, ] = b, [h, m] = m, [m,m] C h with
h:={M;;i,7=1,2,3,i <j}, m:={Mpy;i=1,2,3} can be extracted from the Lorentz
Lie algebra:

[iM,, M, ] = —(MupiMue — NotMup — NuptMye + NueiMy,).

3) The essence of characterization of symmetric spaces by “Macro loops [m, m] pen-
etrated by Micro arrows in h” can be exhibited directly in Macro world in the form
of second law of thermodynamics. Its mathematical essense can be seen in the
following exact sequence!

ANQ L AE=ANQ+ AW L AW,

i.e., Im(q) = ker(p),

This is the same as the relation h — g — m = g/h to characterize Lie structure of ho-
mogeneous space M = G/H.

The cyclic processes of a heat engine correspond to loops on the thermodynamic
phase space M described by thermodynamic variables and holonomy [m, m] associated
with such cycles describes the incoming & outgoing heat between the heat engine & the
external world in combination with the relations [m,m] C h and AE = A'Q+A'W = 0:
—A'W = —[mym] = A’Q > 0, in which the characterization of M as a symmetric
space [m,m] C b corresponds to the second law of thermodynamics in Kelvin’s
version!

IEquality Im(q) = ker(p) menas that the vanishing energy balance (ker(p)) taken as the visible work
is equivalent to the input-output of the heat (Im(g)).



3 Sector Bundle & Holonomy

In the case of symmetry breaking of G up to its unbroken compact subgroup H, the
sector structure should be understood in two levels, one with the totality H of irreducible
rep.’s of unbroken subgroup H of G, and the other with G/H as the broken part of G.
To unify these two levels, it is convenient to introduce the concept of a sector bundle:

H< GxH - G/H.
H

In this context we can see the physical origin of space-time concept in its physical
emergence process [1010].

For simplicity, we assume here that a group G of broken internal symmetry be
extended by a group R of space-time symmetry (typically translations) into a larger

group ' =R x G defined by a semi-direct product of R & G with I'/G = R.
In this case, the sector bundles have a double fibration structure:

H < GxH < Tx(GxH) =TxH
H G H H
! !
G/H r'G=R

3.1 Holonomy along Goldstone condensates

Thus, we see that Spec= sector-classifying space has three different axes on different
levels: R
i) sectors H of unbroken symmetry H,
ii) degenerate vacua G/H = M due to broken internal symmetry [I003, I004],
iii) I'/G = R as emergent space-time [I010] in broken external symmetry.

These axes appear geometrically as a series of structure group contractions H «—
G <« T of principal bundles Py <— Pg — Pr over R, specified by solderings as bundle

sections, R < Pg/H = Py x (G/H), R & Pp/G = Pg x (T/G) = Pg X R, which
H

correspond physically to Goldstone modes.

3.2 Helgason duality with Hecke algebra

. K\G/H N
We see the duality between Helgason duality [HRad] K\G <~ G/H in K\G — G/H
N e S

with Radon transform & Hecke algebra K\G/H
and the algebraic structure of “augmented algebras” [I003] for symmetry breaking
as “stereo-graphic” extension of planar diagrams:



o/ X=X \n =/ 0,=0%\n
' I N\ / J N
xH (8 X A(R) [} Oq [same kinds of
e NN\ Soml = e N\ /r1 . lines constitute
! X ! ! X(R 1l exact sequences]
/l\/ b\ L L7 NN
2 3 R —- TI' - H

Similar push-out diagram appears also in Doplicher-Roberts reconstruction [DR90]
for field algebra X' (R) with unbroken symmetry

3.3 Symmetric space structure = Maxwell-type equation due to
symmetry breaking

Symmetric space structures of G/H = M & T'/G = R arising from symmetry breaking
are characterized by the equation [m, m] C b to connect holonomy [m, m] (in terms of
curvature) with unbroken generators in b.

It is really interesting to note that this feature is shared in common by Maxwell
& Einstein equations of electromagnetism and of gravity, respectively:

LHS: (curvature F,,, or R,,) = (source current .J,, or T},,,) : RHS,

which can be seen by noting that all the quantities [m,m], F,, and R,, on LHS
represent holonomy terms and that those on RHS are associated with generators f of
unbroken subgroups.

In the usual context (related to the 2nd Noether thm), Maxwell equation is un-
derstood as an identity following from the gauge invariance of “action integral” under
local gauge transformations. In contrast we have no such classical quantities as action
integrals nor Lagrangian densities defined in our algebraic & categorical formulation of
quantum fields.

3.4 Possibility for Dressed Photon equations?

Without such quantities as “action integrals”, symmetry breaking criterion with [m, m] C
b tells us that Maxwell-type equation with curvature term [m, m] on the left-hand side
and the internal symmetry term b on the right-hand side is just a consequence of symme-
try breaking of local gauge invariance into spacetime and internal symmetries. Putting
the Clebsch-dual electromagnetic field S, due to Sakuma [SOO] in the place of [m,m],
therefore we can learn that S, represents the condensation effect of dressed photons.



3.5 Galois Functor in Doplicher-Roberts reconstruction of sym-
metry

We recall here how Doplicher & Roberts (DR) [DR90] recovers internal symmetry group
from DR category T of local excitations as group-invariant data.

Objects of T : local endomorphisms p € End(A) of observable algebra A, selected
by DHR localization criterion [DHR] 7y 0 p [ 4(0/)= 70 [ 4(07), and
Morphisms of 7: T € T(p — o) C A intertwining p,o € 7: Tp(A) = o (A)T.

The group H of unbroken internal symmetry arises as the group H = Endg (V) of
unitary tensorial (=monoidal) natural transformations u : V' — V with the represen-
tation functor V' : 7 — Hilb to embed 7 into the Hilbert-space category Hilb with
morphisms as bounded linear maps.

3.6 Galois Functor in Category & local gauge invariance

Recall that a natural transformation w : V' — V is characterized by the commutativity
Vip) = Vip)
diagrams: V(T) ] O | V(T) |, namely, V(T)u, = u,V(T) for T € T(p — o).
Vie) — V(o)
Our simple proposal here is to define a local gauge transformation 7,,(V) of functor
V by 7. (V)(T) := usV(T)u," corresponding to a natural transformation v € H =
Endg (V) [RIMS2013, RIMS2014].
Then, the above equality, V(T)u, = u,V(T), can be reinterpreted as local gauge
invariance 7,(V) = V of functor V under local gauge transformation V- — 7, (V') induced
by a natural transformation v € H = Endg(V), as has been visualized in the context

of lattice gauge theory.

4 Trinity relation of Saddle point, Indefinte metric
€ Non-compact group

For the purpose of theorteical description of dressed photons, crucial step will be to rec-
ognize proper dynamic functions in close relation with “tapering” cone structure formed
by condensed dressed photons. To implement ideas in this direction, it is important to
install the Clebsch-dual variables due to Sakuma [SOO] which carry spacelike momenta
and constitute the characteristic off-shell structure of electromagnetic field.

To see the general meaning of off-shell structures, a trinity connection is to be
focused, among saddle-point instability, presence of indefinite metric (in some
Hessians of Morse functions) and the action of a non-compact group on the saddle
point.



In wider contexts including thermodynamics, statistical mechanics, gauge theories
and induced representations of groups, most important common aspects are the trinity
connection between saddle points & indefinite metric, due to the co-existence of
stable € wunstable directions corresponding to compact subgroup H and to non-
compact G/H part of the bigger group G, respectively.

4.1 Saddle points and Morse theory

When this mechanism for determining geometric invariants is applied to sector classi-
fying space, non-trivial relations between quantum Micro dynamics & geometric Macro
structure of classifying space can be envisaged and described in terms of unstable
modes and indefinite metric corresponding to saddle point structures. In Morse theory
contexts [Morse] of deriving homologies and/or cohomologies as geometric invariants,
they are determined by negative-metric components of Hessians defined as the second
derivatives of Morse functions whose dimensionality is called “Morse index”.

In concrete systematic descriptions of dynamical processes from this viewpoint, the
actual meaning of treating “stability” aspects would be restricted to examining which
“branches” would satisfy the (conditional) stability and which conditions can support
the classifying space Spec describing the multi-sector structure serves as the setting up
for such discussions.

4.2 Stability vs. instability

Thus it becomes possible for us to envisage the problems of whether stable or unstable
naturally in wider perspectives. Moreover, this kind of contexts would require us to
pursue such processes as the formation of classifying spaces Spec through emergences
triggered by the instability at saddle points as the bifurcation points between stability
& instability.

Through this kind of changes, big transitions would perhaps be implemented to
enable us to be faithful to such natural recognition that dynamical motions are
absolute and fundamental and stable states are conditional.

Are the basic points for this direction hidden in “indefinite metric” which has been
disliked so far?: answer to this question is really affirmative when we combine the
following points, i) indefinite metric at the saddle point, ii) symmetry breaking
aspects inherent in Mazwell equation, and iii) spacelike supports of dressed
photon momenta described by Clebsch-dual field.

4.3 Roles Separated into Micro vs. Macro with geometric in-
variants

Now we consider the problems along the above line.
For this purpose, we consider first 1) induced representation of groups, and 2) guage
theories.



1) As is well known,

Lie group G: compact <= Killing form 6 of its Lie algebra g is negative definite,

G: non-compact <= Killing form 6 of g is indefinite

While irreducible representation (o, W) of maximally compact subgroup H is real-
ized in a (finite-dimensional) positive definite Hilbert space W, the irreducible finite-
dimensional representation of non-compact semisimple G is possible only in a vector
space with indefinite metric.

5 Induced representation Ind%

In this situation, the induced representation Ind% (o) [Mackey] of G induced from a

representation (o, W) of H can be realized in an infinite-dimensional positive definite

Hilbert space L2(G — W) = L*(G) ® W which is defined as the subspace of W-valued
H

functions £ : G — W on G satisfying the condition of H-equivariance:
&(gh) = o(h)é(g) for g€ G and h € H.

According to the equivariance condition, the representation (o, W) of H is recovered
(by the left translation) at the origin e € G:

[ln-1€](e) = &(he) = &(eh) = a(h)E(e).

In this way the appearance of indefinite metric in the representation space due
to non-compactness of G is absorbed into the infinite dimensionality of the repre-
sentation space.

5.1 Micro-unphysical can become Macro-physical

2) In the case of (abelian) gauge theory with a gauge potential A,,, its Lorentz covariant
formulation is possible only in a state vector space with an indefinite metric. In the total
space with indefinite metric, we can introduce the concept of a physical subspace Vp,y.
consisting of gauge-invariant physical modes, by imposing such a “subsidiary condition”
[KO] as @ € Vypys < (QLA")(*)(ID = 0. In this physical subspace Vppys longitudinal
modes causing the difficulties of indefinite metric are shown to be absent, according to
which consistency of the probabilistic interpretation is guaranteed within Vs at the
Micro level.

Existence of quantum modes with indefinite metric spoils the consistency of the
theory at Micro levels, as is seen in the difficulties caused by longitudinal photons in
probabilistic interpretation. For this reason, one tries to exclude longitudinal photons
from QED and it is common wisdom that such unphysical modes can be systemati-
cally expelled from physical subspace of physical modes selected by imposing a suitable
“subsidiary condition”.



5.2 Coulomb mode as Micro-unphysical & Macro-physical

As a plain fact in real Macro world, Coulomb modes exist and mediate interactions be-
tween electric charges. According to the standard “quantum-classical correspondence”,
mutual relations between Micro & Macro, between quantum & classical, can be under-
stood in such a way that quantum observables non-commutative in Micro scales become
mutually commutative classical observables in the “classical limit” with A — 0 and that
classical observables can be “quantized” through imposing the canonical commutation
relations as a result of which quantum theory equipped with non-commutative quantum
observables can be realized.

In non-trivial emergence processes to Macro, however, this simple-minded picture
between quantum & classical observables fails to hold by such paradoxical situations
that some physical variables invisible (or driven away as unphysical modes) at Micro
level may become visible in Macro world, as is exemplified by longitudinal Coulomb
modes. In such cases, how is the fate of risky “indefinite metric”??

5.3 How Induced Representations avoid Indefinite Metric?

In emergence to Macro, indefinite metric in Micro disappears to be substituted by
geometric non-triviality. This phenomenon takes place also in the construction of rep-
resentations of non-compact groups induced from its compact subgroup.

Typical example found in co-dimensional unitary rep. of (inhomogeneous) Lorentz
group (R*x)SL(2,C), first established by a physicist E. Wigner in 1939 [Wig39] in use
of the method of induced representations. In spite of non-compactness of SL(2,C), we
do not encounter infefinite metric in this situation.

Mechanism of induced representations to suppress infefinite metric can be seen in such
a form that non-compact group SL(2,C) possibly inducing infefinite metric is treated
here as base space M := G/H = SL(2,C)/SU(2) of SU(2)-bundle:

H = SU(2) — G = SL(2,C) — M = SL(2,C)/SU(2).

5.4 Alternation between indefinite metric in Micro & geometric
non-triviality in Macro

At each point of base space M = SL(2,C)/SU(2) (as a part of sector classifying space),
we have a fixed Lorentz frame acted upon by rotation group SU(2) as the structure
group of each Lorentz frame and the actions of Lorentz boosts SL(2,C) are just to
move from one Lorentz frame to another, which do not exhibit infefinite metric related
with SL(2,C) like the case of its matrix representation.

On this geometric setting up, the representation I ndgg(é’)c)(a) € Rep(SL(2,0C)) in-

duced from a representation ¢ € Rep(SU(2)) is defined on the Hilbert space L2(SL(2,C) —
W) as given above, which is isomorphic to L?(M) ® W in the present situation where
the base space M = SL(2,C)/SU(2) is a symmetric space.
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5.5 “Wigner rotation” as Dual of IndS

Owing to the duality,
[Ind (0)](9) = {glInd§;(0)) = {(Ind§)*(9)lo) = o((IndF)* (9)),

each group element g € G belonging to non-compact G = SL(2,C) is transferred to
(Ind$)*(g) belonging to compact subgroup H := SU(2):

Rep(SU(2)) 3 0 — Ind% (o) € Rep(SL(2,C)),

SU(2) 5 (Ind$)*(g) — g € SL(2,C).

This mapping (Ind$)* is called (in physics) “Wigner rotation”, since each of its image
(Ind%)*(g) € SU(2) is a rotation.

5.6 “Wigner rotation” as Gauge Connection

According to exact sequence H «— G — M = G/H, group G can be interpreted as an
H-principal bundle with structure group H over base space M = G/H. In this context,
the sequences Rep(G/H) — Rep(G) — Rep(H) and H — G — G/H are split exact
sequences, owing to the induced representation [ ndg : Rep(H) — Rep(G) and to the
“Wigner rotation” as its dual (Ind$)* : G 3 g — (Ind$)*(g) € H, resepectively:

G
Ind%

Rep(G/H) — Rep(G) <= Rep(H),

H = G-G/H.
(Ind$)*

Le. vector bundle Rep(G) on base space Rep(H) with standard fiber Rep(G/H) has
Ind$; as a horizontal lift.
Principal H-bundle G over G/H has a H-valued connection given by (Ind%)*.

= Induced representation gives a basis for structural analogy with gauge theory,
in terms of gauge connection (I ndg)* as a splitting of exact sequence.

5.7 No Problem for Macro Coulomb Mode

In the case of 2) with the Coulomb mode, we need not worry about the appearance
of indefinite metric because the longitudinal Coulomb mode of classical gauge fields is
already described in terms of the commutative variables. Instead, what can be non-
trivial now is the possibility for condensed modes of particles due to Coulomb attractive
force, according to which such non-trivial effects as superconductivity phenomena can
be realized.
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6 Spacelike momenta shared by statistical mechan-
ics, Regge poles, dressed photons & Coulomb force

After the case studies of 1) induced representations and 2) gauge theories with Coulomb
mode, what to be analyzed for the purpose of understanding common features among
various composite systems with inclusion relations can be found as follows:

3) statistical mechanics and thermodynamics

4) Regge trajectories appearing in hadron scattering processes,

5) mechanism of dressed photons.

Because of the big difference in the appearance among these five cases, however, it
may be unclear where we can find any coherent common features. Just skipping the
detailed account along individual specific features, the common essence shared by all
these cases can be found in the existence of the following three levels as well as their
mutual relationship:

6.1 Exact Sequence consisting of Broken/ Unbroken Symmetry
groups

a) a compact Lie group H to describe inivisible Micro dynamics associated with some
flows,

b) the level of “horizontal duality” formed by the algebra X’ of observables to visualize
H and the state space Ex(C X*) of X which is controlled by a Lie group G containing
H as a subgroup, and,

¢) the sector classifying space Spec(D G/H) emerging from the states Ey of X,

What is most important is such a situation that the group G(D H) controlling
the level b) of “horizontal duality” is a non-compact Lie group with a Killing form
with indefinite signature, arising from the extention of the group H of Micro dynamics,
characterized by the exact sequences:

H— G- G/H,
Rep(G/H) — Rep(G) — Rep(H).

6.2 Examples of Broken/ Unbroken Sequences

For instance, in the case of dressed photons, the region with spacelike momenta is
created by introducing the Clebsch-dual variables and in the case of Regge trajectory
in hadron physics, the ¢t and u-channels formed via the duality transformations s = ¢
& s = wu interchanging s,t & u-channels provide the stages of Regge trajectories
consisting of the series of Regge poles with complex angular momenta. While
well-known Gibbs formula (A) = Tr(Ae ) /Tr(e=#H) in statistical mechanics shows
no remarkable structural features, it can be applied only to small finite systems with
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discrete energy spectrum, In contrast, Tomita- Takesaki modular theory required for
the treatment of general systems with infinite degrees of freedom is equipped with such
a double structure as consisting of the von Neumann algebra M of physical variables
in the system and its modular dual M’ = JMJ whose composite system MVJMJ is
controlled by the Hamiltonian Hg = —JHgJ with “indefinite metric”, whose physical
interpretation can be reduced to the concept of heat bath.

6.3 Induced Representations & Automorphic Forms

The induced representation Ind% (o) of the Lorentz group G = SL(2,C) determined
by a unitary representation o of the rotation group H = SU(2) in a finite-dimensional
vector space W is given in an infinite-dimensional Hilbert space V' defined by

Vi={p:G — W;p(gh) = a(h™")p(g) for g € G,h € H}

according to the defining equation [Ind$(c)(9)¢](g1) := ©(g~ g1), which reproduces
o(h)forhe Hat g=e € G:

[Indfi (o) (h)¢l(e) = a(h)lp(e)].

6.4 Automorphic Forms arising from Induced Representation

By means of the horizontal lift G/H — G of G/H = SL(2,C)/SU(2) associated
with the “Wigner rotation” (Ind%)*, the domain of Ind% (o) can be shifted from G
to G/H. Therefore, if we express the elements g € G in the form of fractional linear
transformation, the above definition of V' can be rewritten with as

az+b

Tl W _ -1
V={¢:G/H — W;p(g92) = o(cz + d) so(cz+d

),

g= €G,ze G/H},

a b
c d
which shows that the module V' consists of automorphic forms ¢. Since automorphic
forms are transformed into ¢ functions by Mellin transform, the pair (G, H) with G/H

a symmetric space is related to the number-theoretical contexts.

6.5 Fractional Linear Transformaions

While the use of fractional linear transformation: gz = %+% for g = “ Z ed

cz+d
may look accidental owing to the (2x2)-matricial form of SL(2,C), this is not the case
because this speciality can be easily lost by such identification of the Lorentz group as
G ~ SO(1,3) — M(4,R). Actually, what is essential is not such a special form of
matrices but the decomposition of representation vector space U of GG into unbroken U,
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and broken subspaces s, U = U1 ®Ys, according to which G has such a decomposition

U1 Vs
as T 4 B in a certain neighbourhood of the identity element of G.
Y, C D

6.6 Flag manifold as Generalization of Fractional Linearity

Moreover, if we want to extend the above bipolar contrast between unbroken vs broken
into some scale-dependent multi-polar gradations of symmetry breakings along many
steps, we can consider such a flag manifold structure as related with a multi-component
decomposition U = Y1 G Vo @ - - - & Y, of the representation space U:

G=Upi+p2+- +p)
~NG/H=Upi+p2+--- +p)/[Up1) xUlpz) x -+ x Upr)];

which may be related with the continued fractions. In this context, we can see the
intrinsic relation between fractional linearity and Grassmann manifold in the case of
r=2.

7 “Indefinite Metric” inherent in Modular Structure
of Thermal Equilibrium

Here we want to touch on a blind spot in the “common sense” in physics which can
interpret the “stability” of a state only in such a restricted form as the poisitivity of the
energy in the form of spectral condition.

While, in inifinite system with the operator e =## out of trace class, it is impossible
to separate sharply the physical system and its heat bath, the mutual relation between
them can be mathematically understood [HHW, BR] by the relation:

Hg = —JHgl. (1)

If the component H of Hg acting on the system &, can safely be extracted and be
separated from that on the commutant X, then the essential contents of this equation
could be seen in such a form as

Hy=H— JHJ,

7.1 Negative Metric in Modular Theory and Heat Bath

In infinite systems, however, meaning of the above H is only formal. Apart from this
subtlety, the above formal equation explains that anti-unitary operator J interchanges
the system & its heat bath. Since total system consisting of the system & heat bath
has Hamiltonian Hg whose spectrum is positive/ negative symmetric as in (1), negative
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energy component may be interpreted as energy going from the system to the heat
bath. Interestingly enough, concept of “heat bath” which is mysterious but important in
thermodynamics has once been expelled by Gibbs formula (A) = Tr(Ae=?H) /Tr(e=PH)
(applicable only for the system with discrete spectrum), but, has survived.in the abstract
form in algebraic general formulation of statistical mechanics based upon the Kubo-
Martin-Schwinger condition [KMS, HHW, BR]:

wp(AB(t)) = ws(B(t — i) A),

which is free from such a restriction of discrete energy spectrum.

Similarly to longitudinal photons with “negagive metric” Hamiltonian Hg of the
total system contains negative component (formally —JHJ), which means the exis-
tence of a saddle point instability associated with thermal equilibrium states.
Without unstable modes and their condensations, existence of Macro heat bath may
have been impossible.

8 Frobenius Reciprocity

Two opposite directions are involved in induced representations, to expand o € Repg
of smaller H into that Ind% (o) € Repg of bigger G, and to identify a given v € Repg
of G as v = Ind% (o) induced from o € Repy of H. This latter process is controlled by
the imprimitivity. Mutual relation between two processes is controlled by Frobenius
reciprocity:

Repr (v [g— 0) S Repa(y — Ind% (o))

or
Repg (Indfy(0) — 7) S Repr (o — 7 [u),

where Repg(71 — 72) means the set of intertwiners T : v — 72 from 71 to 7
satisfying the intertwining relation Vg € G Tv1(g) = 72(9)T, namely,

T € Repg(y1 — 72) <= Vg € G : Ty1(g) = 72(9)T

V’Yl - V’Yz
71(9) | O 1 72(9)
V’Yl ? V’Yz

9 Towards Theory of Dressed Photons

In order to construct a consistent theory for describing dressed photons, it will become
a crucial breakthrough to reproduce faithfully its proper dynamic functions by grasping
properly the “tapering” cone structure formed by the condensed dressed photons. To
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implement the ideas in this direction, it is important to install the Clebsch-dual elec-
tromagnetic field [SOO] discovered by Sakuma carrying spacelike momenta which
constitute the characteristic off-shell structure of electromagnetic field. which forms the
Micro-Macro boundary level described by a symmetric space G/H = Spec arising from
a broken symmetry by visualizing the s-channel strictire at the invisible Micro level into
spacelike t-channel.
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A Brief Summary of Micro-Macro Duality in Quadral-
ity Scheme

Integrating [dynamical aspects of the system in question] with [geometric description
of the relevant structure in terms of invariants generated by dynamical processes which
implement classification of the processes and structures]

— category-theoretical framework of “Micro-Macro duality+quadrality scheme”
([I003]; 1.0., “Quantum Fields and Micro-Macro Duality” [I013] [2013, in Japanese]
and also see [I00k13]) by incorporating categorically natural duality between dynamical
processes € classifying spaces.

By analyzing closely in this framework dynamical processes and classifying scheme
based on geometric invariants generated by the former processes, we can understand
that both of invisible Micro domain corresponding to dynamical processes and of visible
Macro structure to the classifying structure in terms of geometric invariants constitute
duality structure, to be called “Micro-Macro duality” [1006].

A.1 Quadrality Scheme

Duality between on-shell < off-shell means that on-shell corresponds to the particle-like
Macro and the off-shell to the existence of quantum fields in virtual invisible modes.
Micro processes of motions can be described by a group(oid) structure acting on the
algebras of physical quantities, Macro classifying structure emerging from dynamical
processes can be extracted from the structure of state space as the dual of algebra of
physical quantities and a geometric space emerges consisting of classifying indices ex-
tracted from states which functions as the dual of the Micro dynamical system. Putting
altogether these four ingredients of dynamics, algebras, states and classifying space,
they constitute a “quadrality scheme” describing “Micro-Macro duality” [I006]:
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y. Classifying Space
= Spec
(Family of)

States

S 1 (Representations) | < | Algebra |

/!

Dynamics

A.2 Emergence of sector classifying space

In this mathematical framework for describing emergence process, crucial roles are
played by the concept of a “sector”.

What is a sector: for the mathematical description of a quantum system, we need
a non-commutative (C*-)algebra X (: Algebra) of physical variables to charac-
terize the system and a certain family of states w € Ex to quantify measured values
w(A) of physical variables A € X. According to GNS theorem [BR], a representation
(T, N, Q) (called GNS representation) of X is so constructed from w that physical
variables A € X are represented as linear operators 7, (A) acting on a Hilbert space $),,,
the totality of which determines a very important concept of representation von Neu-
mann algebra m,(X)” =: X,,. Elements C € 3,(X) of the center 3,(X) of X,, defined
by

3,(X) = 7m,(X) N, (X) =X, NX.,

are commuting with all elements X in &, [C, X] =0 for VX € X,

and play the role of “order parameters” as commutative Macro observables.

A.3 Sectors = Factor States

Commutativity of center allows simultaneous diagonalization of 3, (X) yields spec-
tral decomposition of a commutative algebra 3,(X) = L°(Spec) with spectrum of
3,(X) denoted by Spec := Sp(3,(X)). The diagonalized situation with all the or-
der parameters specified corresponds physically to a pure phase, or mathematically
corresponding to a quasi-equvalence class of a factor state v with a trivial cener:
3,(X) = &, Nn&, = Cl which is called a sector. Here quasi-equvalence [Dix]
means unitary equivalence up to multiplicity and a factor state corresponds to a
minimal unit of states or representations in the sense that its center cannot be decom-
posed any more.

A.4 Sectors and Disjointness

To understand properly the concept of sectors, it is crucial to note the following points
about the mutual relations between different sectors. Namely, the relation betwen two
different sectors my,ms is expressed by the concept of disjointness as follows:

T (A) = m(A)T (YA€ X) = T =0,
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which is stronger than unitary inequivalence and has deep implications as seen later.
Macro quantities characterized by their commutativity appear as the center 3, (X) of
a mixed phase algebra 7, (X)” = X, containing many different sectors as pure phases,
and its spectrum Spec = Sp(3, (X)) as realized values x € Spec of order parameters
C € 3,(X) discriminates the pure phases contained in the mixed phase state w, The
sectors as pure phases play the roles as the Mico-Macro boundary between quantum
Micro system & classical Macro system as the environment, and they unify, at the same
time, both these into a Micro-Macro composite system as a mixed phase.

A.5 Relations among Sectors

According to this story, the duality between intra-sectorial domains vs. inter-sectorial
relations holds as follows:

inter-sectorial

«— Visible Macro consisting of sectors — .
relations

YN sectors vy Y2 Y1 Spec

T intra-sectorial

Ty 77’72 77’725 7TV1E H

| invisible Micro

The concept of sectors defined in this way as Micro-Macro boundaries between in-
visible Micro & visible Macro realizes the theoretical framework of quadrality scheme
which provides the precise formulation of “quantum-classical correspondence”.

A.6 Disjointness vs. Quasi-equivalence

Along this line, we clarify the homotopical basis of Tomita theorem of central decom-
position of states and representations [BR].

In the C*-category Repxy of representations of a C*-algebra X, there exists the
universal representation m, = (my, ) € Repy containing Vr = (w,H,) € Repy as its
subrepresentation: m, = 7 = (7, 9,) € Repx.

Such 7, can be concretely realized as the direct sum (my, $,,) := & (7, w) of all
weEFEx

the GNS representations, with the action of universal enveloping von Neumann algebra

X" 2 X =, (X) Dy

For a representation m € Repy its “disjoint complement” 7 is defined [I004a] as
maximal representation disjoint from 7:

7° := sup{p € Repx;p o7},
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where p o m <= Repx(p — m) = {0}: i.e., no non-zero intertwiners.

A.7 Disjoint Complements & Quasi-equivalence

Then, we observe the following four points, i) — v) [I004al:

i) P(n°) = c(m)*,
P(1%°) = ¢(n) Lt = ¢(n) := V uPru* € P(3(W*(X))),
() = el = elm) = v (307 (X))
where P(7) € W*(X)' is defined as the projection corresponding to (7, ) in 9, and
¢(m) is the central support of P(m) defined by the minimal central projection majorizing
P(w) in the center 3(W*(X)) := W*(X) N W*(X) of W*(X).

ii) 7r1‘55 = 77255 <= m = 7 (: quasi-equivalence= unitary equivalence up to multi-
plicity <= m1(X)" ~ ma(X)" <= c(m1) = ¢(m2) <= W*(71). = W*(m2).)

A.8 Quasi-equivalence & Modular Structure

iii) Representation (wéé,c(w)f)u) of the von Neumann algebra W*(7r) ~ 7°°(X)” in

e(m)9y = P(ﬂ'“’“’)ﬁu gives the standard form of W*(r) equipped with a normal faithful
semifinite weight ¢ and the associated Tomita-Takesaki modular structure (J,,Ay)
[BR], whose universality is characterized by the adjunction,

Std(ﬂéé’ — 0) ~ Repx(m — o).

Namely, any intertwiner T € Repy(m — o) to a standard form representation (o, $,)
of W*(o) is uniquely factored T = T°° o 7r through the canonical homotopy 7, €
Repy(m — 7r“’“’) with 317°° € Repx(ﬁ‘l"l’ — ).

A.9 Symmetry and Fixed-point subalgebra

Let a physical system be described by the algebra X of its physical variables. Under
action a = (ag)geq of a Lie group G via automorphisms o, on X, the observable algebra
A is defined as G-invariant subalgebra of X’ by

A=X%:={A;a,(A) = A for Vg € G}.
Under suitable assumptions, an exact sequence
AsX > X/A2@

arises in this situation, from which total algebra X can be recovered from the observable
algebra A [DR89, DR90] by means of the crossed product of G in the context of the
categorical adjunction: R

A=x9S5X=AxG.
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When we combine the inclusion relation of groups controlled by the exact sequence
H — G — G/H with the group actions on the algebras of physical variables, we en-
counter the situation of symmetry breakings which involves the mutual relations among
various subalgebras X¢ «— XH «— X .

B Group & Representations in Categorical Context

In view of the definition for a group representation 7 € Repg given by the group
homomorphism properties v(g192) = 7(91)7(92),7(e) = idv,, v(g7") = (9)~", a G-
representation y can be viewed as a functor from the group G as a one-object category
G = C¢ consisting of an object % and of group elements g € G as morphisms * —— % €
G = Mor(Cg)) to another category Hom/(V,) consisting of continuous linear operators in
the Hilbert space V. From this categorical viewpoint, the intertwiner T' € Repg(y1 —
~9) from 71 to 2 is to be interpreted as a natural transformation from a functor v,
to another one v, characterized by the commutativity diagram. In this way, the totality
Repg of G-representations can be viewed as a category Hilb“ of functors from the group
G as a category Cg = G to the category Hilb of Hilbert spaces with morphisms given by
G-intertwiners as natural transformatrions. In this context, the group induction ndfl
from the functor category Repy of H-representations to that Repg of G-representations
can be viewed as a natural transformation [ ndfl : Repy — Repg (preserving the
tensor product structures of Repy and Repg: Ind$% (o1 ® 02) = Ind$(o1) ®@ Ind$ (o2)
for 01,09 € Repp).

B.1 Kan Extensions as Categorical Inductions

Given a funcor K : B — A from a category B to A we consider the problem of extending
a given functor S : B — M from B to M into one T': A — M from A to M so as to
satisfy the relation T o K = S:

17
A - M
K1 o /8

B

In this situation, the functor T is called a Kan extension [MacL] of functor S along
functor K.

B.2 From Kan Extension to Induced Representation

For instance, if we identify K : B — A as the inclusion ¢ : H < G of a subgroup H into
the total group G and S : B — M as a representation o : H — M = Hilb of H with
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Hilb identified with the category of Hilbert spaces, then T': A — M corresponds to an
extension of H-representation ¢ to G-representation ~y:

7
G N M
T O o ’

since the commutativity ¢ = v o ¢ of the diagram means ¢ = v [g. In this sense, the
Kan extension can be viewed as a categorical version of the induced representations of
groups.

B.3 Kan Extension and Yoneda Lemma

In view of the important roles played by natural transformations in mediating adjoint
functors, we need to distinguish between the right & left Kan extensions as follows:

Natpys(T o K — S) S Natpa (T — Rang(S))

Natpa(Lang(S) — T) = Naty5(S — T o K)
The concept of Yoneda embedding [MacL]:
ye(=) =C((=) — ¢) € Sets*” :C 5 d— C(c — d) € Sets

gives an embedding of a category C into the category SetsC”" of pre-sheaves on C (as a
categorical generalization of the concept of functions), and hence, it would be quite useful
to consider the Kan extensions Rany_  or Lany_ along K = y.. However, systematic
investigation on this topic should be done on the next occasions.
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Abstract

A nonlocal response theory was developed to describe a many-electron system within the neigh-
borhood of a nanostructure radiating the longitudinal and transverse electric fields, which are
fundamentally reduced to the scalar and vector potentials (SP and VP). The coexistence of the SP
and VP incidences distinguishes such a near-field optical system from the ordinary optical system,
in which only the VP (under the Coulomb gauge) incidence survives far from the light source. This
fact is the motivation for equal treatment of the SP and VP as the cause of the response in the
near-field optical system. In the semiclassical treatment, the linear and nonlinear single suscepti-
bilities are derived in the form of Heisenberg operators by the functional derivatives of the action
integral of the matter with respect to the SP and VP. These single susceptibilities relate the SP
and VP (as the cause) to the induced charge and current densities (as the result), and guarantee
charge conservation and gauge invariance; this theory is free from gauge-fixing. It is necessary to
consider the quantum many-electron effect (exchange-correlation effect) to make the ground state
bounded in the non-perturbed system. This is done by employing the fundamental idea of density
functional theory, instead of the ordinary unequal treatment of the SP and VP, that is, remaking
the SP into a Coulomb interaction between electron charges. Applying the present linear response
theory to the non-metallic material in a limited near-field optical system reveals that the electric
field with the associated permittivity is not suitable quantity to describe the response, instead, the

SP and VP with associate single susceptibility are essential.

PACS numbers: 78.67.-n, 78.20.Bh, 41.20.-q, 42.25.Ja
Keywords: single susceptibility, non-resonant effect, optical near field, response function, electromagnetic

potential
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I. INTRODUCTION

This paper develops a nonlocal response theory adequate for near-field optics (NFO) in
the semiclassical treatment. The linear and nonlinear single susceptibilities are derived sys-
tematically by the functional derivatives of the action integral of the matter with respect
to the scalar and vector potentials (SP and VP). These linear and nonlinear single suscep-
tibilities relate the SP and VP (as the cause) to the induced charge and current densities
(as the result), and guarantee charge conservation and gauge invariance. The present single
susceptibilities and associated induced charge and current densities are given in the form of
Heisenberg operators.

In Ref.[1], the present author discussed the linear single susceptibility, its application to
an one-electron optical system, and a naive idea of employing the density functional theory.
This paper is its generalization including systematic derivation of linear and nonlinear single
susceptibilities in the form of Heisenberg operator, a simple proof of charge conservation and
gauge invariance guaranteed by such the susceptibilities, and application to a many-electron
system with detailed discussion on the density functional theory.

The introduction below contains the followings: §I A reveals the necessity of the single
susceptibility, instead of the electric permittivity and magnetic permeability. §IB points
out the preference to equal treatment of the SP and VP as the cause of response in NFO,
instead of the unequal treatment in ordinary optics under the Coulomb gauge. §I C explains
the difficulty of constructing the response theory in NFO, which inevitably connected to a

many-electron problem via the SP. §I D represents the purpose of this paper .

A. The necessity of the single susceptibility

As the cause of response, it is natural and essential to use the SP and VP, which represent
for the electromagnetic (EM) field in the Hamiltonian for quantum electrodynamics. Three
reasons are given below for the inapplicability of the electric and magnetic fields as the cause
of response. First, there exist such systems that cannot be described in terms of the electric
and/or magnetic fields, namely, the superconductor system with the Meissner effect[2] and
the coherent electron system with the Aharanov-Bohm effect[3]. A limited NF optical system

is another example, as shown in the one-electron system in Ref.[1] (and will be shown in a



many-electron system in §VI of this paper).

Second, the constitutive equations with the electric permittivity and magnetic permeabil-
ity give relationships between redundant degrees of freedom. Actually, the essential source
of the EM field is the three components of charge density and the transverse current den-
sity. The longitudinal current density is excluded because it can be determined through
charge conservation law, once the charge density is known. However, the polarization and
magnetization as the source of the EM field have totally six components, which include
the redundancy. So that the associated constitutive equations using the two susceptibilities
include the constraint condition for the redundancy, of which the physical meaning is not
declared. This situation is physically unreasonable and should be fixed by the constitutive
equation using a single susceptibility associated with the proper degrees of freedom.

Third, as first claimed by Cho[4, 5] for the low-symmetry systems with chirality (such as
the NF optical system with a skewed nanostructure), the ordinary two constitutive equations
are not available because the electric and magnetic responses become indistinguishable. He
also revealed that this error cannot be fixed by the Drude-Born-Fedorov fomulas[6], which
extends the two constitutive equations adding the cross terms of the electric-field-induced
magnetization and the magnetic-field-induced polarization.

Therefore, from a general view point, it is essential to employ a single susceptibility with
the SP and VP, instead of the electric permittivity and magnetic permeability with the

electric and magnetic fields.

B. The preference to equal treatment of the SP and VP in a NF optical system

Suppose a small-scale material is placed in the vicinity of a nanostructure, which functions
as a light source (FIG.1). In such a system, under the NF incidence condition, the target
material is exposed to the longitudinal and transverse electric fields simultaneously, whereas
in a system under the far-field incidence condition, the target material is exposed only to
the transverse field, which survives far from the light source. Therefore, the coexistence of
longitudinal and transverse electric fields distinguishes such a system under the NF incidence
condition from that under the far-field incidence condition.

Here, the longitudinal electric field originates from the charge density on the nanostruc-

ture, obeys Coulomb’s law, and has a non-radiative nature to localize around the nanos-



tructure. On the other hand, the transverse electric field originates from the transverse
current density on the nanostructure, obeys Ampere-Maxwell law and Faraday’s law, and
has a radiative nature allowing it to propagate far from the light source, accompanied by the
magnetic field. (The longitudinal current density is determined via the charge conservation
law, once the charge density is known, and is not an independent source.) Therefore, the
two incidences coexisting in an NF optical system have distinct properties.

Furthermore, owing to the non-relativistic nature of the system, the SP and VP appear
in a different manner in the Hamiltonian, (for example, Eq.(30) in §IV,) which governs the
electron response. Considering that the SP and VP under the Coulomb gauge represent the
longitudinal and transverse electric fields, respectively, one may confirm that the two types
of incidences in NFO cause different responses ; see §VI for an explicite demonstration.

Therefore, it is reasonable to treat SP and VP equally as the cause of response in the NF
optical system. Up to now, there has been no such theoretical framework for equally treating
the SP and VP. The reason for this lies in the the many-electron problem inevitably related

to NFO via the SP (the longitudinal electric field), as is mentioned in the next subsection.
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FIG. 1: Optical systems under near- and far-field incidences (the left and right side figures, respec-
tively) . The former system is exposed simultaneously to the incident longitudinal and transverse
electric fields (fundamentally represented by the scalar and vector potentials, respectively, under

the Coulomb gauge), whereas the latter system is exposed to only the transverse field (the vector

potential under the Coulomb gauge).



C. A many-electron problem inevitably related with NFO

The relationship between NFO and many-electron problem has not been well recognized,
although the problem of how to consider the Coulomb interaction in response function has
remained for a long time[7]. In the usual Hamiltonian for a many-electron system under the
Coulomb gauge, the SP is rewritten as the interaction between the electron charge density
operators, and only the VP is considered as the cause of the response. This unequal treat-
ment of the SP and VP is needed to consider the quantum many-electron effect (the so-called
exchange-correlation effect) to construct the ground and excited states as the proper bound
states in a many-electron system. This usual procedure to treat the non-relativistic many-
electron system is compatible with ordinary optics, where the electron system of interest is
far from the light source, and the SP incidence is negligible. By contrast, in an NF optical
system, the usual approach results in a difficulty of understanding the response to the SP
incidence, because both the SP incidence (radiated by the nanostructure) and the inherent
SP (originating from the particle charge) are built into the two-body Coulomb interaction,
and the two contributions are indistinguishable. To make matters worse, the Coulomb inter-
action in itself is so difficult to treat that it is often ignored, without considering it includes
the effect of the SP incidence.

For the NF optical system, there are two existing approaches based on certain single
susceptibilities (the nonlocal response functions). Cho formulated a single susceptibility
that relates the transverse VP (as the cause) to the current density (as the result), and
applied it to various optical systems[8]. Additionally, a modification that considers the
longitudinal electric field incidence in NF optical systems has been proposed in Chap. 5
of Ref.[5]. Keller formulated the linear single susceptibility, which relates the transverse
electric field and the incident part of the longitudinal electric field (as the cause) to the
current density (as the result) [9].

In the above two existing formulations, the SP under the Coulomb gauge (or the lon-
gitudinal electric field), except the linear-dependence of the incidence, is rewritten as the
two-body Coulomb interaction in the usual manner. Therefore, the response to the SP, in
principle, can be rigorously considered via the Coulomb interaction if the many-electron
problem is properly solved, whereas the response to the VP incidence under the Coulomb

gauge (or the transverse electric field incidence) is treated in the perturbative manner. In



this type of approach, it is essential to solve the many-electron problem, in particular, for
the nonlinear process related with the SP. Even if the Coulomb interaction is properly con-
sidered, the unequal treatment may make it difficult to regulate the perturbation order of
the responses and to understand the role of the SP incidence.

As aresult, the response theory in NFO is inevitably relates to the many-electron problem,

which causes difficulty.

D. The purpose of this paper

81 A-§1 C lead to the logical fallacy to use the ordinary two susceptibilities with the electric
and magnetic fields, and the preference to use the single susceptibility equally associated
with the SP and VP, considering properly the many-electron effect in NF optical systems,
although the ordinary two susceptibilities have been widely used both in ordinary optics
and NFO. To best understand the fundamental physics in NFO, it is essential to develop
an adequate response theory. For this purpose, the present paper defines and characterizes
a single susceptibility equally associated with the SP and VP based on the action integral
from scratch.

The contents of this paper are as follows: §II defines the linear and nonlinear single
susceptibilities equally associated with the SP and VP, starting from the action integral. §III
shows that the present susceptibility respects both charge conservation and gauge invariance
in a general manner. §IV derives the linear and nonlinear single susceptibilities in the form
of the Heisenberg operators. §V shows that the many-electron effect in the present response
theory may be supported by the density functional theory to prepare the non-perturbed
ground state as well as a complete set of many-electron states. §VI applies the present linear
response theory to a simplified many-electron system, and show that the electric field with
the associated permittivity is not suitable to describe the response of a limited NF optical
system with a non-metallic material, so that the SP and VP with the single susceptibility
is essential. §VII provides a summary of this work. Two appendices are included: §A and

§B provides calculation details of §II and §VI, respectively.



II. DEFINITION OF NEW SINGLE SUSCEPTIBILITY

Based on the Lagrangian formulation of non-relativistic quantum electrodynamics, we
define the single susceptibility, which relates the SP and VP (as the cause) to the induced
charge and current densities (as the result). Furthermore, it is shown that this susceptibility
guarantees that charge conservation and gauge invariance hold; see the next section. The

action integral for non-relativistic quantum electrodynamics is:
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where m and ¢(= —e) are the electron mass and charge, ¢ is the speed of light, ¢, A are the
SP and VP, which are assumed to be classical field in the semiclassical treatment, @é, &a are
the electron field operators with the spin state « (one of the two spin states; so called ”"up”

EXT) j(EXT) are the nuclear charge and the current densities, re-

and "down” states), and p
spectively, which possibly generate inherent EM field. A static auxiliary potential v(AU®)(z)
is null for now, but is introduced here for the discussion in §V concerning the density func-
tional theory to consider the quantum many-electron effect (the exchange-correlation effect),
€5, 1s an antisymmetric tensor, and the Einstein rule is used for indices of vector and Grass-
mann fields, that is, summation should be executed over repeated indices. At this first stage
of investigation, the interaction between spin polarization and the EM field is ignored. The
soundness of the above action integral is confirmed by its Euler equations, which will soon
be derived.

The electron field operators are considered as quantized Grassmann fields. The Grass-
mann field satisfies [1)q (1, 1), zﬂ;(r’ , )]+ = 0 [10], and corresponds to the ”"classical” field of

the electron. These operators become the creation and annihilation operators of the elec-

tron in quantum theory (the quantized Grassmann fields), introducing the anti-commutation



relationship: [t (r, ), ¥} (1, 1)] 1 = 83 (r — 1')d,p.

The action integral is composed of two parts: one is the action integral of the matter
(including the interaction between the matter and EM field), Z;) ¢ [QZJL, Vs &, A], and the
other is the action integral of the EM field, Zgm[¢, A]. Applying the extremal (optimizing)
conditions with respect to ¢, () , 1! () leads to Heisenberg’s equation, and optimizing with

respect to ¢(z), A(z) leads to Maxwell’s wave equations:
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In Egs.(4) and (5), the left- and right-hand functional derivatives with respect to the Grass-
mann field are executed, respectively. In Egs.(6) and (7), the following definitions are

introduced for the electron charge and current densities, respectively:

o § Y
P(f) = _szmat = Q¢L(x>¢a($>» (8)
Jilz) = +c%@zmat = %&;(x) (?ai - in(x)) Uolx) +hc. . (9)

The charge conservation law below holds, and is checked through explicit calculation:
Oup(x) + Diji(x) = 0. (10)

In the four-element representation, Eqs.(6) and (7) become:

~

1 - )
(6”0 = 0"9,) A" (x) = EO—C(J“(H?) + jEXDOE(2)), (11)
where j* = (cp,j), ju = (cp.—J),
At = (¢,cA), A, = (¢, —cA),
ot = (1/06,5, —V), 8# = (1/Cat,V),

O=0"9, =1/ 87 — A | etc. (12)



Although Lorentz invariance is not maintained in the non-relativistic theory, we use the
four-element notation to simply represent charge conservation and gauge invariance. For
example, Egs.(8)-(10) become:
@) = o Tnat (13)
0A,()

9y J*(x) = 0. (14)
The action integral, Eq.(1) is invariant under the following gauge transformation:

At(z) — A(z) — cO0"n(x),
dal@) = 1o (@), Pl(a) = dlx)eT 7, (15)
where n(z) is the gauge function. From the point of view of Noether’s theorem[11], the
gauge invariance of the action integral is the cause of the charge conservation law, Eq.(10)
or Eq.(14).
Let us separate the EM field into two parts:

At (z) = AR (2) 4 AAM(z), (16)

where A is the static, non-perturbative EM potential satisfying Eqs.(6) and (7), and
AA*(x) is the perturbative EM potential. Under this variation of the EM field, let us re-
optimize the action integral of the matter, Zy) 4t [zﬂi, Vs AH]. That is, we re-optimize the
electron field operator satisfying Eqs.(4) and (5) under A©* + AA#(z). In the above proce-
dure, the variation of the action integral of the matter is expressed by the total functional

derivative with respect to A*(x):

)
— 7
514#(1') mat[
)
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Yt
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4 .1 N / Wa(fl?')
-I—/d T 5Imat/5¢a(m)6Au($)

Av=A0)v
L a0
= =/ (z; [A™"]), (17)

where the first term in the second expression is the variation explicitly caused by the pertur-

bative EM field, and the second and third terms are the implicit variations, created through

10



re-optimization of the field operator to satisfy Egs.(4) and (5) under the existence of the
perturbative EM field. The last expression is derived using Eq.(13), Eqgs.(4) and (5). The
above equation reveals that the first order total functional derivative of the action integral
of the matter is simply the current density in the non-perturbed system. Furthermore, the

second order total functional derivative is calculated as follows:

o o

T ) 3, () Dt ValA] 047, A

Av=A0)v
0 OPL()
T +/d4a:’ o 258 (2)\0T,
expliit mat) 5Am (21) <5Ay<x> () \0Tmat
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, (18)
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1 8w
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where the second and third terms in the second expression are null. Actually, the integrand
of the second term is:

5 ol oy,
( Tk Aﬂ@))wiy(x)\azmm NG

0 (o )
o (5Auf(xl)5¢l<$/)\5zmat>] ;

AV :A(O)V

The first term in this equation is null because of Eq.(4), and the second term is also null
because of Eq.(A2) in Appendix A. In the same manner as for higher order total functional
derivatives of the action integral of the matter, the following extension of Eq.(18) holds,
owing to Egs.(A1) and (A2) in Appendix A,

5n+1zmat [,&Iz [AV] ) '&a [AV] ’ AV]
SA#n (xy,) - - - 0AM (21)0 A, ()

=1 8 [AY)
2 §AR(xy,) - 0AM ()

(19)

Av=A0O) Av=A0O)

To define the single susceptibility, suppose the system under the non-perturbative EM
field A% (x) is exposed to the perturbative EM field AA#(z). The non-perturbative EM
field A% is a solution of the coupled equations Eqs.(4)-(7), namely, Heisenberg’s equation
and Maxwell’s wave equations, and is assumed to be a static solution existing in the ground
state. On the other hand, the total EM field A®* 4+ AA* is not necessarily a solution of

Maxwell’s wave equations, Eqs.(6) and (7), that is, AA* is introduced as a virtual variation.

The induced current density is the variation from the current density in the non-perturbative

11



system:

/\
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. (20

From Egs.(19) and (20), the linear and nonlinear single susceptibility operators are defined
as:

0" (x; [AY])
dAM ([El)

X”Ml (x7 xl) =

Av=A00)v
_2 0*Iat
0A,(z)0 A (z4)

1 (e [A)
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)
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(22)

Av=A0)v

Av=A0)v

, (23)
Av=A0)v

The susceptibility is defined using a small amount of variation, AA*. That is, the EM
field does not in general satisfy its Euler equation, Eq.(11), while the electron field operators
satisfy Eqgs.(4) and (5). To evaluate the real EM field, AA* must be determined and a further
procedure is required to solve the coupled equations, with the constitutive equations in
terms of the susceptibility and Maxwell’s wave equations Egs.(6) and (7). This procedure is

provided in a self-consistent manner, as performed by K.Chol8] using his single susceptibility.
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III. CHARGE CONSERVATION LAW AND GAUGE INVARIANCE OF THE
SINGLE SUSCEPTIBILITY

In the last expressions in Egs.(21)-(23) the coordinates w1, xs, -+ for the cause (the
perturbative EM field) and the coordinates x for the result (the induced current density)
are symmetric. Charge conservation for the induced charge density holds to each order of
the perturbation because of Eq.(10) or Eq.(14) and Eqgs.(20)-(23); this is described by the

derivative of the coordinate for the result, x:
OuX! (20,0 ) =0 (24)

The symmetry of the coordinates between the result and the cause leads to the following

equation concerning the derivative of any coordinate for the cause, e.g., z1 :
omxt, (x,xq,---)=0. (25)

Equation (25) means that the susceptibility guarantees that gauge invariance is respected.
That is, the resultant charge and current densities are independent of the chosen gauge.
To confirm this fact, consider the convolution integral of the single susceptibility with the

perturbative EM field, in a certain gauge, e.g.,
/d%l Ry, JAAR (3). (26)
A gauge transformation of AA to AA’ in another gauge is expressed as :
AAM (x1) = AAM (21) — c 0" (1), (27)
where 7 is the gauge function. Equation (26) leads to:
/d41171 X (@, oy, ) AAM (2)
= /d4x1 Xy (2,20, JAAM () + c/d4x1 X! (@, ()
- /d4x1 (21, JAA™ (). (28)

The contribution of the gauge function vanishes in the convolution integral. Thus, the gauge
of the perturbative EM field may be freely selected. This means that the susceptibility is
independent of the chosen gauge and, in practice, one may select a gauge that is most

convenient for calculation.
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IV. SINGLE SUSCEPTIBILITY IN THE FORM OF HEISENBERG OPERATOR

In this section, the linear and nonlinear single susceptibilities in the form of Heisen-
berg operators are derived using an expansion of the retarded product in Hamiltonian

formulation[12]. The Heisenberg operator of four-element current density, i.e., j“(x) =
(cp(@), j(x)) is:
ba() for p=0,
h a,
—(=0") — TAM@) ) tha(z) + hee. for p=1,2,3.
1

. cqil ()
jH(x) = 5 q

29
ZDL(I)% 29)

In Eq.(2), if the factor ikl (z) of the first term is regarded as the canonical momentum
of &a (x), then the Hamiltonian density may be determined as the Legendre transformation

from the Lagrangian density, that is:

~

io= e o (Lo aa@) ) (0 a4 dalo) + a0(e) dLle)ia(o),
(30

This Hamiltonian governs the motion of electron field operators. Assuming that the non-
perturbative EM field ¢, A is the static EM field existing in the ground state of a
many-electron system, the Hamiltonian, H may be separated into a non-perturbative part,

H©® and a perturbative part, V as follows:

A9 = [0 5o (20— aa"@)) 340 (50 - 040 @)) dul) +960) dL )l
+ 0N (@) Gl (2)da (@), (31)
Vity=H - HO = /d?’xf)(x),

3\@

= [ {A¢<x> 2L (a)in(r) — DA) 5
+-L A A (2) A A (2) qdl(x)z/?a(x)}

(w*( ) (? 8 — gAY (x )) zza(x>+h.c.)

2m
]_ ~
_ 3 o W K , )
B /d ! {CAA (@ >j”( )A:A(O) 2mc3 5“ A (@)AA, <x>jo(x)}’ (32)
< 1 f =u' =123,
where ““ = rR=a (33)

0 otherwise.

The auxiliary potential, v*U®)(z) effectively represents for the quantum many-electron effect

(the exchange-correlation effect); this fact will be explained in the next section. The factor
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Ju() o in Eq.(32) is the current density Eq.(29), with the explicitly-appeared VP being
replaced by that in the non-perturbed system. The tensor Eq.(33) represents the non-
relativistic effect. Actually, this tensor is the analogue of the four-element Kronecker delta,
but brings inequality of the temporal and spatial coordinates.

Here, the field operators in the interaction picture (the asymptotic field operators)
DT 8™ are governed by the non-perturbative Hamiltonian H(© and coincide with the
field operators in the Heisenberg picture, &L, z/?a at the infinite past time, ¢ — —o00, assuming
the adiabatic switch-on. The unitary operator U (t,—o0) is the time-evolution operator of

the states in the interaction picture, and relates the operators between the Heisenberg and

interaction pictures as follows:

Q/A}a(x) = 071(@ —OO)’lﬁém) (Q?)U(t, _00)7 (34)
dli(@) = U7t —00) M (2)U (t, —00),
where U(t,—oo) = lim ﬁ(t,to) — lim Tew fgodt/x?um(t,)’

to——o0 to——o0

V() = V(08 )

« «

Combining Eq.(34) and Eq.(29), the four-element current density operator in the interac-
tion picture may be defined as: @™ #(z) = (¢p™(x), j¥ (x)). These charge and current
densities do not satisfy the charge conservation law, except for A = A® and are merely

convenient tools used for obtaining the expansion of the retarded product of the Heisenberg

operators.
M) = U’l(t,—OO)J(m ( )U(t, —o0), (35)
| g™ () ) " (x) for 1 =0,
J () = (36)

P (g ) ( (—=0") — (:L’)) O (z) +he. for p=1,23.

To obtain the perturbative expansion (the retarded product series) of the Heisenberg oper-
ators, let us introduce an operator in the intermediate picture, where U (t,to) will be used
instead of U (t, —o0):

p(wite) = UMt to) g™ (2) 95 (2)U (8, 10),

it(aite) = 070t @) (50~ i) ) @0 0) + D
The corresponding four-element current density is

M (3te) = (e (3 o), J* (23 10))

15



As ty — —o0, these operators coincide with those of the Heisenberg picture, while at ¢ty = t,

they coincide with those of the interaction picture:

~

Uy —o0) = jH(x), (37)
Pty = ). (38)

Next, let’s investigate the time evolution of 7*# as a function of .

00" (x3t0) = {00, U™ (t,10) 11 (@)U (8, Tt 10)] (1) {0, U (2, 10) }
1

)+
= V)0 1) >U<t 1) + U1t 10)J ™ @)U t0)
= ;—hl [J M to), V(m)(to)}

V(z‘n) (t())

Integrating over [ty, t], approximating iteratively using Eq.(38), and changing the region of

multi-integration, we obtain:

I (ste) = 3O (@) +

(m) / dt / tldtg / dt3 )yun)(tl)] ,f/an)(t?)] ’f/(m)(t:g)} L

Then, taking the limit t, — —oo, the above equation yields the retarded product of the
Heisenberg operators, as follows:

) = 5@+ g [t [1000), 50

t1€(—00 ct]

1 2 A(in ~(in A (in
V) [t o ] o)
e ct1€(—oo,ct] J ctae(—

00,ct1]

1\° o . . A
+ <_) / 'z, / de, / dhy || [0 (@), 0 (@) |, 00 (w5)] 00 (23)|
ihc ct1€(—oo,ct] J ctae(— ctze(—

00,ct1] 00,cta]
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+ e
where V() = /d3x o ()

§() = ZAA () IO (@) — 5 B AN () A (2) 7 (x)
C

2me3 #

~(in ~(in qa < ! ~(im
() = Je(a) — L FEA A (1) J0 ),

and 700k () is the current density in the interaction picture, that is, Eq.(36) with the
VP being replaced by the non-perturbed system. Equation (40) is obtained from Eq.(32),
replacing ¥, ¢! by DM PSMT pespectively. Next, let us derive the single susceptibility
in the form of Heisenberg operator by the functional derivative of Eq.(39) with respect to
the EM potential. In Equation (39), the dependence of the EM potential through ;™ #(z)
in Eq.(36) is of zeroth and first order for u € {1,2,3}, and dependence through 9™ (z;)
is of first and second order. The linear single susceptibility operator comes from the A!-

dependence, which exists in the first and second terms of Eq.(39) :

—q ~(in/ 1 ~(in/ ~(in/
= L §Ma — 1) 0)0(90)%—@0(025—@1) Um0 (), 5600 (21)| | (42)

5(in0) p — slin)p
where ()= () ’A:A(O) :

The Heisenberg operators of the nonlinear single susceptibilities, to second and higher
order, are as follows. To avoid any confusion in the case of two times coinciding, the long
and explicit expressions are given, without using the time ordering operator.

6%j*(x)
dAM (.1’1)(514“2 (l’g)

2! )2“;1,1”2 ('T? 1/']_, x?) =

A=A0)

1 - N ~(in/ ~(in
== m_cqz {5(075 —ct1)f(ct — cty) 5““153@ — 1) [j( 00(z), 5¢ 2)2(@)}

+8(ct — cta)(ct — ctr) 8, 6%z — 1) [50"0)0(95),5(%‘"2)1(%)}
+ 0(ct — ct1)d(cty — ctg)gm 0% (21 — 12) [j(ino)u(m)’j(ing) (xl)] }
1 \? » » »
+ (o) {0t - cnoten —ca [[100(). 3% (00)] 3070 )

+0(ct — cta)flcty — ctr) [ [J0O 0 (@), 0 (@)] G 0]} (43)
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(et — cta)f(cts — cta)f(cta — chr) || |70V (2), 5O ()] G () | G0 ()| 49)

The charge conservation, Eq.(24) and gauge invariance, Eq.(25) are respected in Eqs.(42)-
(44). This fact is successfully checked after long and tedious calculations; a supplementary

document is provided for details.

V. THE GROUND STATE IN DENSITY FUNCTIONAL THEORY AND SINGLE
SUSCEPTIBILITY

The linear and nonlinear single susceptibilities are the expectation values of the corre-
sponding operators, Eqs.(42)-(44), using the ground state in the non-perturbed electron
system, which is specified by the simplified conditions in this paper:

A(z) =A@ =0, jBXD(z)=0, o) =0¢"(z)and pPXV(z) are static.  (45)

Let us explain how density functional theory[13, 14] may allow us to prepare the ground
state and the complete set of the states in a many-electron system, refining the naive idea in
Ref. [1]. For that purpose, we need the electron field operators together with the SP and VP
satisfying the coupled equations, Eqs.(4)-(9). However, in the semiclassical treatment of the
present theory, Egs.(8) and (9) are replaced with their expectation values using the ground
state, which we seek now on. Due to this procedure, the quantum many-electron effect, the
so-called exchange-correlation effect is ignored. Therefore, the solution of Eqgs.(4)-(9) as it
is may not reproduce the electron charge density of the proper ground state, pgs(r), which
is obtained using the ordinary Hamiltonian including the two-body Coulomb interaction,
converted from the SP under the Coulomb gauge. Such the electron density pgs(r), in turn,
brings about the proper SP ¢®)(z) under the Coulomb gauge. Suppose that the proper
electron charge density pgs(r) is already known under the ordinary Hamiltonian.

Now, we like to seek for the ground state |0) in need, adjusting the auxiliary potential

vAUX) (1) to make the electron charge density fit the proper one:

(0[p()[0) = pas(r). (46)

Such a situation in Eq.(46) is assumed by Kohn and Sham in the density functional
theory[14]. That is, Egs.(4) and (5) are equivalent to Eq.(2.8) in Ref.[14] [the Kohn-Sham

equation], if vAUX)(r) is regarded as the so-called exchange-correlation potential.

19



For details, one may prepare the spin-orbital function ¢ (r) (k, « stands for the orbital
and spin states) as the eigenstate of the Kohn-Sham equation with the eigenenergy hwy,.
Under the conditions of Eq.(45), the Kohn-Sham equation is,

0— (m o) - o v<AUX><r>) or(0), (47)

2m 1

where v(AUX) (1)

is set to the exchange-correlation potential, that guarantees Eq.(46). Then,
ba(z) = 5" (z) = 3, ou(r) al"(t) satisfies Eq.(4) under the condition Eq.(45), where
a,(;;l ) is the operator to annihilate the electron associated with the spin-orbital @i(r) in
the non-perturbative system. Considering {¢x(r)} as a complete set of the one-electron

functional space, the ground state with the electron number n in the present theory is

constructed as the single Slater determinant,

to——o0

|0) = lim \/_1,;[ mo T(to) [vac) (48)

where |vac) is the vacuum state, and the indecies ka scan over the n spin-orbitals from the
lowest eigenenergies. Furthermore, under the fixed vAUX)(r) and ¢ (r), one may consider
all the possible combination of n spin-orbitals and obtain the normalized orthogonal complete
set {{m)|m =0,1,2,---} in terms of all the possible single Slater determinants.

On the above logic, one should know the proper electron charge density pgs(r) beforehand

AUX)(r), which is the universal functional of the electron density[13, 14]. In

to determine v!
practice, however, one may solve the Kohn-Sham equation, possibly under the local density
approximation for vAUX)(r), and reconsider the resulting charge density as pgs(r).

The expectation value of the single susceptibility operator is, (0[X*,, ..(%,z1,--)|0), and,

for example, the linear susceptibility becomes:

~ —q x ~(inl
(Olx* , (,21)]0) =3 5“u154(x — 21) (0] °(2)|0)

ottt = a0 [, o

Next, to evaluate the products of two (or more) current density operators, e.g., the second

term in Eq.(49), we may use the projection operator 1 = 3 |m)({m|. Now, the expectation
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value in the second term of Eq.(49) becomes,

(O] [0 (@), 19 ()] 10)
= > {01305 ) ) (75 ()10} — (017 () ) (77 ()]0} |

_ lim {(OIGZ—;H(O)(htO)}(mO) ( )|t " elH(O)(t to>‘m><m‘€lﬁH(O)(t1 to)j(mO) (xl)’tl toerH(O) t1—to)

to—o0
m

_ <O’e%ﬁ(0)(t17t0)](ln0 (ml)‘tl temH(O)(tl to) ]m><m]e hH( ) (t— to)j(mﬂ) (fﬂ)‘ teth(O)t to)

— Z {ei(Emeo)(tm)<0‘§-(m0)u(m)‘t}w‘?m <m‘j(zn0 (1) o0}
_ em (Em Eo)(t—t1) <0|] (in0) (x1>’t1 _w’m>< ’] (in0) p ( )’tz—oo’0>}- (50)

In the induced charge and current densities obtained from the convolution integral of Eq.(50)
with the perturbative EM field, the energy denominator will appear as shown in §VI.

In the above theoretical framework, |m)’s are simply the members of the complete set,
and, in principle, do not carry physical meaning of excited states of a many-electron system.
Considering that the density functional theory concerns only the ground state of the many-
electron system, the above treatment is a sound application of density functional theory
to the response theory adequate for NFO. Remark that the variational principle based on
Eq.(1) cannot determine the auxiliary potential, vV (z) but is determined with the help
of another theory, namely, the density functional theory.

As a summary, the quantum many-electron effect is temporally ignored in the present
semiclassical theory, but is compensated with the support of the density functional theory.
In other words, the SP inherently existing in the electron system is separated as ¢ (z) and
U(AUX)(I'), and the SP incidence may be treated equally with the VP incidence. Note that,
#(z) is under the Coulomb gauge but the SP and VP incidences may be gauge-free, that

is, the present response theory is still free from gauge-fixing.

VI. APPLICATION: A LOGICAL FALLACY TO USE THE ELECTRIC FIELD IN
NEAR-FIELD OPTICS

Under non-resonant conditions in the optical near field, non-metallic materials cause
various phenomena not observed in conventional optics, such as highly efficient light emis-

sion from indirect-transition-type semiconductors (LED[17, 18] and Laser[18, 19]), chem-
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ical reaction with insufficient photon energy (chemical vapor deposition[20], optical NF
lithography|[21], optical NF etching[22]), frequency up-conversion[23, 24], non-adiabatic
effect beyond forbidden transition (local energy concentration[25], nano-photonic gate
device[26]), and gigantic magneto-optical rotation of the LED[18, 27].

These experimental results draw attention to a fundamental role of the non-resonant
condition in NFO. We have no complete answer at this stage but the application of the
present response theory to a many-electron system in NFO shows a logical fallacy to use the
electric field and the electric permittivity, and the necessity to use the EM potential and
the associated single susceptibility. The discussion of the one-electron system appeared in
Ref.[1], but is concisely reviewed below in §VIB-§VIE because the many-electron version in
§VIF may be simply a recast of the one-electron version, owing to the density functional

theory. For the readability, calculation details are given in Appendix B.

A. Classification of optical systems

First, let us classify the optical systems. The two systems under near- and far-field
incidence conditions in FIG.1 are subdivided into two classes depending on the near- or
far-field observation condition. These four classes are listed in TABLE I, together with a
summary of the results mentioned below. In particular, the systems of (I') and (II') are the
limiting cases of null longitudinal incidence of the systems (I) and (II), respectively. Thus, in
the systems (I') and (II'), the longitudinal response vanishes and the difference in response
may not be observed. In the following, therefore, we focus mainly on systems (I) and (II),

in which longitudinal incidence exists.

B. Susceptibilities associated with longitudinal and transverse electric fields

Applying the present linear response theory and the long wave approximation (LWA) to
the spinless one-electron system with two levels on a small scale, the induced charge and
current densities (as a result of the response), Ap(r,t) and Aj(r,t), are described as the
total derivative with respect to the longitudinal and transverse electric fields (as the cause

of the response), AE®(0,t) and AE®(0,t), where 0 is the representative position in the
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TABLE I: Classification of optical systems by distance from the target material to the light source
and distance from that to the observation point, together with a summary of the results; the

validity of the electric field as the cause of the response.

Near-field observation |Far-field observation
Source:Ap and Aj Source: Aj

Near-field incidence : (I) NF optical system | || (I) NF optical system
AE® + AE® non-resonant / resonant | |(non-resonant / resonant
Validity of the electric field / OK OK / OK

Far-field incidence : (I') NF optical system ||| (Il')conventional optical system
AE® non-resonant / resonant ||| non-resonant / resonant
Validity of the electric field OK / OK OK / OK

electron system under the LWA. The derivations are given in §B 1 and the results are,

Ap(r,t) = /" (r,0) AEL(0,1) + X7V (r,w) AEP(0,1) (51)
Aji(r,t) = x5O (r,w) AEY (0,1) + 15 (r,w) AEY(0,1) (52)

J

where the partial derivative coefficients, x(r,w)’s are susceptibilities associated with the
longitudinal and transversal electric fields. In Eq.(52), the time derivatives of the two types
of electric fields, namely, AE’]@(O, t) and AE](-t)(O, t), are regarded as the causes, instead of
the two types of electric fields themselves. The magnetic response will appear in the higher
order of the LWA and vanishes in Eqs.(51) and (52) representing the leading order; see
Refs.[4, 5] and §VIG. For the present spinless electron system, the electron field operators,
&L(:L’), &a(x) is reconsidered as &T(x), 1&(:1:), respectively, eliminating the index of the spin
state, a.

To evaluate the susceptibilities in Eqgs.(51) and (52), the two levels are assumed to be
the ground and excited states in the non-perturbed system with eigenenergies, hwy and
huwwy, and orbitals, ¢o(r) and ¢;(r), respectively. Those orbitals are assumed to be bound
states expressed by real functions, carry well-defined and distinct spatial parities (even and
odd parities), and form the normalized orthogonal complete set. The excitation energy is
hAw, = hw, — hwy > 0; this finite excitation energy means that the target is a non-metallic

material, such as a molecule, nano-structured semiconductor and insulator.
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The susceptibilities in Egs.(51) and (52) are derived in §B 1, and those leading to the

induced charge density result in the following:

i 1
= 2¢* —D; ©
r, (,U) q 772 1 Tio j QO(](I') 1(1’) s (53)

4
X]g<—( )(I‘, w) :X;u—

(t) (

hA itati
where n= wi _ excitation energy and (54)
hew photon energy

D; = [dr ¢1(r) 75 o(r). (55)

This means that the responses to the longitudinal and transverse electric fields are common,
such that the induced charge density has a linear relationship with the total electric field,
namely, Ap(r,t) = X;;e(z) O, w) (AE](-E)(O,t) + AE](-t)(O, t))

The susceptibilities leading to the induced current density are not so simple and result

in the following:

¢h? 1 1

W) =S o G D G m0(®) — i (®)0p(m) (56)
) =) = T s a0)ale). (57)

The susceptibility to the transverse electric field, Eq.(57), is composed of two terms. The
first term, namely, the resonant term, includes the energy denominator enhanced under the
resonant condition, 7 ~ 1, as in the susceptibility to the longitudinal electric field, Eq.(56).

The second term, namely, the non-resonant term, does not include such a resonance factor.

C. Equal responses under the resonant condition

Under the condition  ~ 1 in all cases in TABLE I, Eq.(57) is dominated by the resonant
term (the first term) over the non-resonant term (the second term) and asymptotically equals

Eq.(56).

O, w) = 2, w) . (58)

Equation (58) together with Eq.(53) reveal the equivalency of the responses to the longitu-
dinal and transverse electric fields, so that the total electric field is regarded as the cause of

the response in all the optical systems under the resonant condition listed in TABLE 1.
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D. Equal responses under the far-field observation condition

In the system (II) and (II') in TABLE I, the far field to be observed is insensitive to
the details of the source but is determined by the spatial average of the source. Under the
LWA, such an average can be achieved by the spatial average of the susceptibilities. Detailed

calculations are shown in §B 2 and the results are as follows:

XOrw = X Y(rw) =0, (59)

() () 5,1 1
X w) =0 w) = 0 A T e

(60)

where the overline represents the spatial average and V is the volume of the target material.
From Egs.(59) and (60), one may not observe different responses to the two types of inci-
dences under the far-field observation condition. The null response represented in Eq.(59)
is reasonable because the induced charge density yields the longitudinal electric field, which

has a non-radiative nature and vanishes in the far-field regime.

E. Unequal responses under the non-resonant, NF incidence, and NF observation

conditions

The different responses to the longitudinal and transverse electric fields claimed in §1B
may be detected only in the system (I) in TABLE I under the non-resonant condition,
which is just the compliment to the popular optical systems under the resonant condition
or the far-field incidence condition or the far-field observation condition. In the NF optical
system (I) with a non-metallic material under the non-resonant condition, the total electric
field is not the cause of the response; therefore, the response may not be described by the
ordinary constitutive equation, namely, the linear relationship between the polarization and
"electric field” via the electric permittivity, so that the single susceptibility is essential to

treat separately the longitudinal and transverse incidences.

F. Extension to the many-electron system

The above one-electron model is very simple and the responses may be modified in a

many-electron system or a low-symmetry system. However, the difference in the responses
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to the two types of electric fields originates in the non-relativistic nature of the system (as
stated in §IB), and should survive in actual NF optical systems with non-metallic mate-
rials (the materials with finite excitation energy). Actually, the results revealed in §VIB-
§VIE are applicable to the corresponding many-electron system, considering the auxiliary
potential vAU¥)(z) to construct the orbitals using the Kohn-Sham equation (46), and re-
placing the complete orthogonal set composed of the one-electron ground and excited states,
{a{™ 1 (—o0)|vac), a7 (—oco)|vac)} (—oo means the time of the infinite past) to the corre-
sponding set, composed of two single Slater determinants, {]0), &\ (—c0)a{™” (—o00)[0)},
where |0) is the ground state in the density functional theory as defined in §V, and
a1, aSm1 and @\, '™ are the annihilation [and creation] operators associated
by the the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecu-
lar orbital (LUMO), respectively, determined by the Kohn-Sham equation (46). Owing to
the density functional theory, recasting the formulation in the one-electron system brings
that in the many-electron system, if the HOMO and LUMO dominate the excitation.

As a result, the many-electron system of a non-metallic material under the non-resonant,
NF incidence, and NF observation conditions may not be described in terms of the electric

field and the associated permittivity. Instead, the EM potential and the single susceptibility

are essential.

G. Comparison with the existing theories

In NFO, the response to the longitudinal electric field is discussed in Chap. 5 in Ref.[5]
and Chap. 9 in Ref.[9], as mentioned in §I C. The present work is a further comparison of
the responses to the two-types of electric field, considering the non-resonant condition.

Another logical fallacy to use the electric and magnetic fields is pointed out by Cho,
as briefly mentioned in §IB. In Refs.[4, 5], Cho derived a Taylor series of the nonlocal
response function[8] under the LWA, and assigned the electric permittivity and magnetic
permeability in the macroscopic constitutive equation as the term of order O(ka)® (the
leading order) and O(ka)?, respectively, where ka < 1, 27 /k is the light wavelength, and a
is the representative size of the material. Furthermore, he pointed out that the ordinary two
susceptibilities are irrational because the separability of the electric and magnetic responses

not applicable and the term of order O(ka)! appears in a chiral symmetric system, including
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a NF optical system with a low-symmetric nanostructure. The present demonstration is
concerned with the logical fallacy, which appears in the electric response (the leading order

from the viewpoint of Cho) in NFO under a non-resonant condition.

H. A remark on applying the finite differential time domain (FDTD) method to

NF optical systems

The macroscopic constitutive equations in terms of the electron permittivity and mag-
netic permeability have been widely employed to calculate the optical near field in the FDTD
method[16]. One may notice that the permittivity in the FDTD method carries a simple
spatial dependence and leads to some quantitative error. Actually, the microscopic sus-
ceptibilities, for example, Eq.(53), Eq.(56), and Eq.(57), have rippling spatial distributions
originating from the orbitals.

In the case of the NF optical system (I) in TABLE I with a non-metallic material under
the non-resonant condition, the situation is more serious because the concept electric field is
not available, such that it is a logical fallacy to use the macroscopic constitutive equation.
Thus, a novel simulation method is necessary, in particular, for the NF optical system with

a non-metallic material.

I. Why this fallacy has been missed for a long time?

Why has the comparison of responses to the two types of electric fields not been addressed
in NF optical theory? First, in the long history of optics, the NF optical system (I) in
TABLE I under a non-resonant condition has been out of focus. Such a system could not
be resolved until the technical difficulty of NF observation was overcome. Additionally,
resonance phenomena continue to attract attention. Furthermore, even in NFO, there has
been less emphasis on non-metallic materials, as opposed to metallic materials, which are
essential for plasmonics.

The second reason is that the ordinary Hamiltonian for a many-electron system does not
include the longitudinal electric field, which is rewritten to the two-body Coulomb interac-
tion, as stated in §I C. With this Hamiltonian, the non-linear response to the longitudinal

electric field (the SP under the Coulomb gauge) incidence accompanies the Coulomb inter-
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action, and is ignored or unequally treated compared with the response to the transverse

electric field (the VP under the Coulomb gauge).

J. Summary of this section

In the NF optical system (I) in TABLE I, the responses to the longitudinal and transverse
electric fields should be separately treated, and in a more general view point beyond the
LWA and linear response theory, it is essential to employ the linear and nonlinear single
susceptibilities, considering both of the SP and VP equally as the cause of response.

To the best of our knowledge, the NF optical system with non-metallic material under the
non-resonant condition, namely, the system (I) in TABLE I, is the third example that cannot
be described in terms of the electric field and/or magnetic field, after the superconductor
system with the Meissner effect[2] and the electron system with the Aharonov-Bohm effect[3],

as mentioned in §TA.

VII. SUMMARY

1. Aiming to investigate electron response in NFO, we define the linear and nonlinear

single susceptibilities, equally considering the SP and VP as the cause of the response.

2. It is shown that the present single linear and nonlinear susceptibilities guarantee charge

conservation and gauge invariance.

3. The linear and nonlinear susceptibilities in the form of Heisenberg operators are derived
systematically by means of the functional derivatives of the action integral of the

matter with respect to the SP and VP.

4. It is shown that the density functional theory may be used in the non-perturbed system
and support to prepare the ground state and a complete set of states, which in turn
are used to evaluate the expectation values of the operators of the linear and nonlinear

susceptibilities.

5. Applying the present response theory to a simplified model system, it is shown that

the single susceptibility is essential to describe the response of the optical system
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with non-metallic material under the non-resonant, NF incidence, and NF observation

conditions.

Some remaining problems meriting further investigation include:

1. Applying the present response theory to actual non-resonant NF optical systems with
a non-metallic material in Refs.[17]-[27] to explore the mechanism leading to the out-
standing experimental results such as the high-efficient light emission and gigantic

magneto-optical effect, etc.

2. Developing a constitutive equation based on the single susceptibility which can aid
experimentalists in NFO as a substitute for the electric permittivity and magnetic

permeability of ordinary optics.

3. Developing a practical simulator for the many-electron system in NFO, using the
present response theory with the support of the density functional theory, as the

replacement of the FDTD simulation method,

4. Extending the response theory to treat the spin-polarization system in NFO, based on

the Pauli or Dirac equation.
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Appendix A: Optimization of Electron Field Operators Under Arbitrary EM Po-

tential

Under a given EM potential, A”, the electron field operator optimized to satisfy Eq.(4)
is considered as the functional of A%, i.e., Vo (x; [A¥]), ] (2; [A"]). Then, the next equation
holds for n =0,1,2,---:

5
A () - - O AR (27)
5
S AM () - O AP (27)
Proof: Equation (4) should be hold both under A(®)”(non-perturbative EM potential) and
under A©¥ 4 AAY therefore,

5¢L($/)\5Imat =0, (A1)

Av :A(O)V

0. (A2)
Av=A0)v

5Imat/51[’oe<x,)

501 () \ T | =0,
Vel )\ Tmat (Do A )=($a[AOY+AAY] DA +AAY],AQ) + A AY)

Taylor expansion leads to:

=17, L7 (04 (+)\ Tt o o ;
;E/ :pn/ xléA“n(xn)---c?A“l(xl) (1) (2,) =0,

(o, A)=(aAQ] L [AO¥],AC)
Considering this equation as the identity with respect to AA#(x) results in Eq.(Al). Equa-

tion (A2) is proved in the same manner, starting from Eq.(5).

Appendix B: Calculation details in §VI

Here we provide the calculation details in §VI, including the derivation of the unfamiliar

relationship Eq.(B14) between two types of dipole transition matrix elements.

1. Derivation of the constitutive equations, Eqs.(51) and (52), and the suscepti-
bilities, Eq.(53), Eqgs.(56) and (57)

The incident SP and VP, A¢(r,t) and AA,(r,t), are assumed to be monochromatic with
the angular momentum w, and are expressed using the Coulomb gauge and LWA as follows:
A(r,t) = Ap(r) coswt = (Ap(0) — AEY(0) - r) coswt, (B1)

AA(r,t) = AA(r)sin(wt + &) = —éAE(t)(O) sin(wt + &), (B2)
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where £ is the phase difference between the two incident potentials. In the spinless one-
electron system, the linear response theory with Eqgs.(20) and (42) leads to the Heisenberg
operators of the induced charge and current densities, as follows in the three-element repre-

sentation:

/dtl /d 1 { . (mo (r,t), ﬁ(ino)(rl,tl)] Ag(ry,t1)
L 7 (ino) ~(in0)
7 [P (r,t), Ji, (1‘1,151)] AA; (ry,t1) ¢, (B3)
Aji(r /dh /d3T1 {.— Zzn0)< i), ﬁ(ino)(rlytl)] Ag(ry,t1)

g B0, ] A | - a0 0aA .

(B4)

The last term in Eq.(B4) originates from the non-relativistic nature of the system and is
needed to maintain charge conservation law.

Evaluating the expectation value of Eqgs.(B3) and (B4) using the ground state [¢o(r) in

Eq.(B8)] and substituting Eqgs.(B1) and (B2) leads to Eqs.(51) and (52), in which the causes

of the responses are the two types of electric fields and their temporal derivatives, defined

as
0 _ 0) (t) _ (t)
AE;7(0,t) = AE;’(0)coswt, AE;”(0,t)= AE;’(0)cos(wt +¢§), (B5)
. 9 B
AED(0,1) = aAE} (0,1), AEY(0,1) = EAE]@ (0,1). (B6)

In the above, no magnetic response appears because it is the higher order in the LWA
as revealed by Cho [4, 5]. To obtain susceptibilities, Eq.(53),Eqs.(56) and (57) using the
two-level model, we take the expectation values of Eqgs.(B3) and (B4) using the ground
state ¢o(r), insert the projection operator [the left side of the second equation in Eq.(B7)],
between the two operators in the commutators, and integrate over the domains of ¢; and
r;. We assume that the two orbitals are real functions, and form the normalized orthogonal

complete set:
JEr enene) =0mns Y en®enl) = e 1), (B7)
where @, (r) satisfies,

HO(r) = hwp om(r),  (m=0,1). (B8)
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Having real orbitals infers even temporal parity, such that there is a null VP (or mag-
netic field) in the non-perturbed system. To derive the susceptibilities associated with the
transversal electric field in Eqgs.(53) and (57), we use the well-known linear relationship

between the two types of dipole transition matrix elements,

2m
Ci = /d?’r (Oip1(r)po(r) — @1(r)0ipo(r)) = ﬁhAwl D;. (B9)
Equation (B9) is derived from the matrix element of Heisenberg equation for dipole charge
density:
O d e t) = - g 1), HO)] (B10)
ot '’ ih LY ’
. ~(in0) 194 (10 A0 s .
using p\""(r,t) = e # p"™(r,0)e" # and the projection operator, i.e., the second

equation in Eq.(B7) satisfying Eq.(B8).

2.  Derivation of the spatial average of the susceptibilities, Egs.(59) and (60)

The following replacements in Eq.(53), Eqgs.(56) and (57) lead to Eqs.(59) and (60):

ae) — 3 [Erame) =0, (B11)
dpr(r)enlt) — aEnlr) 5 [Er o) - p @) = 56 (BL2)
poleenlr) 3 [Ereeam =5 (B13)

To derive Eq.(60), we additionally use the trade-off relationship between the two types of

dipole transition matrix elements,

This is effective in the two-level system with well-defined parity and derived from the

quantum-mechanical commutation relationship:

Inserting the projection operator between r; and gﬁj, and eliminating the null integrals
caused by mismatched parity result in Eq.(B14). From Eq.(B9) and Eq.(B14), D; and C;

are specified as

1 h

_ B16
CZ‘ vV 2m hAw1 ( )
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(We do not use Eq.(B16) in this paper.)
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S. CHARGE CONSERVATION LAW AND GAUGE INVARIANCE OF LINEAR
AND NONLINEAR FOUR-ELEMENT SINGLE SUSCEPTIBILITY

S 1. Linear single susceptibility: Eq.(40) in the main text

To show that four-element linear single susceptibility guarantees the charge conservation
law, Eq.(24) in the main text, suppose the four-element divergence of Eq.(40) in the main
text, considering 9,0 (x) = 0,

DX (1, 21) = —L 5(ct — cty)d" 8, (53(x — ) j<m0>0(x)) (S1)

mc?

]_ ~(in ~(in
+50(ct —ct) [J( 00(z), 5¢ 2)1(371)]

= 0.

In the second term of the second hand, we use the following commutation relationship at
the same time :

d(ct — cty) [j(mO)o(x),;(mg)l (x1)| = _ihCQT,;_;é(Ct — ctl)gﬁl o (53(50 — ml)j(mo)o(:ﬁ)>(32)

— —ithT;—CqZ(S(ct — ctl)gﬁl (0,6%(x — 21)) 50 0(y)

The proof of Eq.(S2) is as follows: If 111 = 0 in the left hand side of Equation (S2), it is the
commutator between charge density operator at the same time, and is zero.

~

= ¢ [ (@)a(@) Pl(@)bale)| =0 (83)

t1=t

~(in ~ (im0
JE00 (@), 5 ()|

t1=t
One may check Eq.(S3) by a straightforward calculation using the anti-commutation relation

of electron field operators at the same time,

ala), G| = e ).

+,t1=t
Next, if 3 = i € {1,2,3} in the left hand side of Equation (S2), the commutator in

three-element representation becomes as follows:
00 @), ) )]
q |- A - h
— ozt [dL)bata) GLGen) (ot - 9A0(00)) duer)

o J
+ ((i@l - qAE‘J)(m)) %L(xl)) gﬂa(xl)] ~ (S4)



As the term includes qA,EO) (x1) is zero following Eq.(S3), let us treat the term including the

derivative.

t1=t

~(in ~(in0
[J( 00(z), 5 1(931)]

= Gk lm 91 [dL(@)da(a) . O o) (o) — B )]

2 mec2 z®—a, ti=t
'y —q

= ihc? —
2 mc

lim o;* <53(SE — 1) (Q&L("L’)?/}a(l";) + dl(xz)@&a(xw

—83 (2 — x3) (&l(x)l@a(ﬂil) + &L(xl)?/;a(x)»

4. B 9
2 mc?

8@ = 20)0; (V4 (2) (1) + DL (21)a ()

+ (0% = 1)) (@) (wr) + Bl (@1)ha(2)
= —Zin L0, (5°(x = w1) (S (0)ba(@r) + I (@1)a(@)) )
— _cqihc? @ai (53(1- - xl)@z}g(x)q/}a(@) — _ihic? —wa (53(x — 1) j<m0>°(x)) (S5)
- —cqithT;—gQ@- (53(:1; - xl)qﬁ;(xl)qﬁa(ml))h:t—mc 25;1 (0,63 — 21)) 5021y

(S6)

t1=t

t1=t

t1=t

where the last two-way expressions Eqs.(S5) and (S6) are in four-element representation
instead of three-element representation. Summarizing Eqs.(S3) and (S6) result in Eq.(S2).
As a result, the present four-element linear susceptibility,Eq.(40) in the main text maintains
the charge conservation law, Eq.(24) in the main text.

For the proof for the gauge invariance, Eq.(25) in the main text, of the linear susceptibility,

suppose the four-element divergence with respect to z;. Then, using Eq.(S2) with the

replacement, x <+ x; and the relation, 5,@“@1 = —Sﬁl 0", one may obtain:
~ q ~(in/
0t (. m) = ne et — ctr) (3,018 (x —21)) j"(a) (57)
“(in ~(in0
—b(et — cty) [0 (), 578 ()]
= 0.

As shown above, the linear susceptibility Eq.(40) in the main text maintains the gauge

invariance Eq.(25) in the main text.



S 2. Second order nonlinear single susceptibility: Eq.(41) in the main text

Next, let us show that the charge conservation law is satisfied by the second order nonlin-
ear single susceptibility, Eq.(41) in the main text. Operating 0, = 5280 + 5;81 + 5582 + 5283
to Eq.(41) in the main text and considering ), #(z) = 0 (the charge conservation law for
the current density operator in the non-interacting system), the surviving terms are those
the operator 0, operates on the step function or delta function in front of the commutator,

and operates on 9 %(z) in the commutator.

Ou 2l>€#u1u2($a$17$2) =
1 —q )
ihc2 me? {(5<Ct — cty)0(ct —cty) 0", 0, (53(:10 — 1)

[
+8(ct — cta)B(ct — cty) 6.0, (53(x — 1) [“W)O(x), j(in0) (xl)D (S8h)
+ (et — cth)d(cty — cta)dy 6w — 1) [“@"0)0(:5), j<mg><x1)] } (S8¢)

" (#)2 [6(ct — et )oet, — eto) [ [§6700(), 567 ()] 56 )] (s8d)
4 8(ct — cta)0(cts — cty) Hj@"O)O(x), 5<mg>2(x2)} ) (xl)] } . (S8e)

Applying Eq.(S2), the third term (S8c) vanishes, and the fourth and fifth terms (S8d) and
(S8e) cancel the first and second terms (S8a) and (S8b), respectively.

As a result, the second order nonlinear single susceptibility operator Eq.(41) in the main
text maintains the charge conservation law, Eq.(24) in the main text.

To check the gauge invariance of the second order nonlinear single susceptibility operator,

let us operate 0"* to Eq.(41) in the main text.

am 2! )A(Mulp,g (.T, X1, .Tz) ==
1 e _ _ S ooug3(. A(n0) 0.\ 3(in0)
R {5(075 ct1)0(ct — cty) (5 1,01 0% ( xl)) [] (z),7 u2($2)i| (S9a)

—8(ct — cty)S(ct — cty) 6, 6 (x — ) |:5(m0)0(1}),j(m8)($1>i| (S9b)

+ 0(ct — ct)3(cty — cta)d, 10" (53(931 — 1) [j@”w(x), 50 (ml)] ) }<sgc>
+ (#)2 ((=5(ct — ct)B(cty — cta) + O(ct — cty)(cty — cts))
(700 a), 5 (@0)] 56 () (39d)

— (et — cta)d(cts — cty) H}“now(m), j@ng;(@)] 500 (xl)] } . (S9¢)



Replacing the fifth term (S9e) using the next Jacobi identity:

[ (@), 0 ()] 5 ()] (S10)

_ Hﬁ'“”ﬂl(m),}”"?(m)} ’j(ino)u(x)} _ Hj(mg)(xl)7j(in0)u(x)] ,3‘“”?)2(:52)} 7

then, the first term in the right hand side of Eq.(S10) with Eq.(S2) offsets the term (S9c),
and the second term in the right hand side of Eq.(S10) offsets the second term in (S9d).

The first term in (S9d) offsets the first term, (S9a), considering the commutation relation

(inO)u(g;),j(mg) (x1)| and Eq.(S2)(remark the change

~

at the simultaneous time, d(ct — ctq) |J
of upper or lower subscript). The second term (S9b) vanishes by means of Eq.(S2).
As a result, the second order nonlinear single susceptibility operator Eq.(41) in the main

text maintains the gauge invariance, Eq.(25) in the main text.

S 3. Third order nonlinear single susceptibility: Eq.(42) in the main text

With respect to the third order nonlinear single susceptibility, let us check the charge

conservation law. Operating 0, to Eq.(42) in the main text,

O XY 1 oy (T3 1, T2, T3) =

RIETAY
the2 \ mc?
{9(ct — ) (ct — cty)8(cta — ct3)duy 10 (w2 — 73)8", D (53(:5 — 1) [30‘"0)0(95), 3“”03(;52)}) (S11a)

+0(ct — ctg)3(ct — cta)3(cts — ct1)5pg 0% (w5 — 21)5",, 0, (53(1; ~ ) [3<m°>0(x), 3“”03(3;3)D (S11b)

+0(ct — ct1)8(ct — ets)3(cty — cta)dp, py6° (21 — 22)3" D) (53(33 — 23) [3<m0>0(x), 3@"03(:61)})( 11c)

1 \2
+(—) =4
(ihc2 ) me?

{5(ct — ct1)B(cty — cta)B(cts — cts)d", D, (53(:1: — ) [[5m00(

2), 798 (w2)] 98 ()

+d(ct — ct1)0(cty — ct3)f(cts — ctg)g“ﬂ1

+3(ct — ct2)0(cta — ct3)0(cts — cty)o", D,

+3(ct — ct3)8(cts — ct1)B(cty — cta)d*, D,

M3

JUO0 (@), j ) (x2) | ¢

+0(ct — ct3)(cts — cty)B(cty — cty)o* P

H3

|
( |
( |
+3(ct — ct2)0(cts — cty)B(cty — ct3)d", D, (53(33 ~ ) [ ¢
( |
0 ( |
(

+3(ct — ct1)d(cty — ct2)(cta — ct3)d,, 1y 0°



+9(ct — ct3)f(cts — ct1)d(ctr —

1\3

()

{(5( ct — Ctl)G(Ctl — Ctg
+0(ct — ct1)0(cty — ct3)f
+d(ct — cto)0(cty — ct3)l
+d(ct — cto)0(cta — ct1)0

+0(ct — ct3)f(cts — ct1)0

Ct2)5u1 1120

(cty — ct3) [H}(mo)o

(cts — cta) [HA(”LO) 0

(cts — cty) [HA(WO

(ct1 — ct3) {HA(mo

(ct1 — cta) H{ (in0) 0
[l

+6(ct — ct3)0(cts — cta)b(cta — cty) [ j(mo) 0

i
)50 )] e

), 560 (@ } jim9) (@
), 5070 (a } m0) (3
AR RS
A(an }7 mo)

)5 JO

2>}

) J

H2

~(in0)

H1

)3 @] )]
[A(mo)o ), 7m0 (x3)] 3 (mz)}
[j(mo 5(1",93( 1)] vj(mo)(M)]

. ] )

(Slip)
(S11q)
(S11r)
(S11s)
(S11t)

(S11u)

The term (S11p) offsets the term (S11d), applying Eq.(S2) to the most inner commutator in

(S11p). In the same manner, the terms (S11q)-(S11u),respectively, offsets the terms (S1le)-
(S11i), applying Eq.(S2). The terms (S11j)-(S111) vanishes, applying Eq.(S2) to the inner

commutator at the simultaneous time. The term (S11m) offsets the term (S1la), applying

Eq.(S2) to the most inner commutator.

respectively, offsets (S11b)-(S1lc), using Eq.(S2).

In the same manner, the terms (S11n)-(S1lo),

As a result, the third order nonlinear single susceptibility operator Eq.(42) in the main

text maintains the charge conservation law, Eq.(24) in the main text.

To check the gauge invariance of the third order nonlinear single susceptibility operator,

let us operate 0" to Eq.(42) in the main text.

aMl 3! XHMMQM. (

RINETAY
ihe? \ mc?

95756179627933) =

{9(ct — ets)d(ct — ct1)d(cts — ct3) (Sumama?*(x - 3:1)) 8rus s 0% (22 — 23) [3@”0)O(x),j“"(’g(zz)}(sma)

+0(ct — ct3)d(ct — cta)d(cts — cty)o" 5 (x — ws) (5#3 1y 0183 (25 — xl)) [3<in0>O(x),j(mog(xg)}(smb)

+ 0(ct — ct1)d(ct — ct3)d(cty — ctg)g”u353(x —z3) (Sm 1 OM10% (21 — x2) p(mo)o(x%j(ino[))(xl)} )%1%)

2
O
the2 ) mc?



{5(ct — ct1)0(cty — ct2)0(cty — ct3) (5”#13”1(53@ - xl)) H}WO)O(x),}(mgg (:@)] ,jm0) (x3)} (S12d)
(et — ct1)B(cty — ct3)0(cts — cts) (&tmamai”(a: - xl)) Hj@‘no) O(x), jm0) (m?,)} o) (x2)} (S12e)
—(ct — et2)B(cts — cts)d(cts — ctr)", 5% (x — w2) Hj<m0>°(x), 50 (4 )} L300 (o 1)} (S12f)
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5,,0% (@ = w2) [ [7070 (@), 30 ()| 5O )| (S12g)

)
+ (—0(ct — ct3)d(cts — ct1)f(ct1 — cta) + 0(ct — cts)0(cts — ct1)d(ct1 — cta))

5,,0% (@ = w3) [[70790@), 30 @) 5 D@2) | (s12m)
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—O(ct — ct3)B(cts — cta)d(cts — ct1) [H (n0) 11 (), 50m0) (5 )] ,jm0) (xz)} , j(""g)(xl)] } . (S12u)



In the following, we prove the next equation, which leads to the gauge invariance.

(S12p) + (S12d) +(S12j) +(S12s) +(S12r)+(S12n) = 0, (S13)
(S12q) + (S12e) +(S121) +(S12t) +(S12u)+(S120) = 0, (S14)
(S12m) + (S12a) +(S12k) = 0, (S15)

(S12i) + (S12¢) +(S12h) = 0, (S16)

(S12f) + (S12b) +(S12g) = 0 (S17)

1. Eq.(S13): The first term of (S12p) offsets (S12d), using Eq.(S2). To the inner double
commutator in the second term of (S12p), the nest Jacobi identity is applied:

j(""o)“(x),j(mg)(:m)] ,3(in2)2 (952)} :5“”22(1’3)} (S18)
= = |[[J"P @0, 3 )| GO @) GO )

[T~ in ~(inl ~(an0 ~(inl
- _HJ( 0 (22), 5" 0”(%)] 7 0)(*751)} ¢ 22(%3)]

—

Furthermore, the inner commutator (, assuming at the simultaneous time) in the first
term of Eq.(S18) , one may apply Eq.(S2). The part including this factor in the
second term of (S12p) offsets the term (S12j). In the second term of (S12p), the part
including the second term of Eq.(S18) offsets the first term of (S12s). Up to now,
(S12p)+(S12d)+(S12j)+ the first term of (S12s)= 0 has been shown.

Next, to the outer double commutator in the second term of (S12r), let us apply the

next Jacobi identity,

L[5 @). 50 ()] 30 ()| 398 (@) (S19)
= = [[7 @), 3D @) [ @), 570 2]

[T T~(in ~(in/ ~(in0 ~(in/
+ _H]( Ok (z), ) 2)2(1132)} ! 0)(3:1)} 3¢ 22(563)]-

The commutator in the first term of Eq.(S19): [j(m% (x3), 3’“"8) (xl)] is the commutator

at the simultaneous time, therefore, we may use Eq.(S2). The part including this factor
in (S12r) offsets the term (S12n). In (S12r), the part including the second term of
Eq.(S19) offsets the second term of (S12s). Up to now, (S12r)+(S12n)+ the second
term of (S12s)= 0 is shown.

Together with the previous result, Eq.(S13) holds.
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2. Eq.(S14): This equation is Eq.(S13) with the replacement zo <> x3 and uy <> s,
therefore, Eq.(S14) holds.

3. Eq.(S15): The first term of (S12m) offsets (S12a), using Eq.(52).
To the double commutator in the second term of (S12m), the nest Jacobi identity is
applied:
JOOn (), 5 ()| 3 () (320)

_ H;(z‘ng)(xlm(mg)m)} ’j(z‘no)u@)} _ Hj(mg)(x2)7j(in0)u(x)] 75(mg)(xl)}

__A-in ~(in0 1 ~(@in0 )
= | |708(2), 3D (25) |, 5D (1)

In the above, we use the inner commutator (at the simulatenesou time) in the first
term of the second hand side becomes zero, using Eq.(S2). The second term of (S12m)

includes the factor of Eq.(S20) and offsets (S12k).

As a result, Eq.(S15) holds.

4. Eq.(S16): To the double commutator in (S12i), we apply the next Jacobi identity:

[700@), 0 ()] 57 @) (S21)

= = [ [1 @), 3 @) JO0 @) = [0 @), 300 @)] L5 )]

The inner commutator in the first term of Eq.(S21) is the commutator at the simul-
taneous time, therefore, we may use Eq.(S2). The part including this factor in (S12i)
offsets the term (S12c). In (S12i), the part including the second term of Eq.(S21)
offsets the second term of (S12h). The first term of (S12h) is zero, because the inner
commutator included in this term is commutator at the simultaneous time and leads

to zero, using Eq.(S2).

Therefore, Eq.(S16) holds.

5. Eq.(S17): This equation is Eq.(S16) with the replacement zo <> x3 and uy <> s,
therefore, Eq.(S17) holds.

As the summery, Eqgs.(S13)-(S17) hold and the third order nonlinear single susceptibility

Eq.(42) in the main text maintains the gauge invariance Eq.(25) in the main text.
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Abstract

In the light of Newton-Wigner-Wightman theorem of localizability
question, we have proposed before a typical generation mechanism of
effective mass for photons to be localized in the form of polaritons
owing to photon-media interactions. In this paper, the general essence
of this example model is extracted in such a form as Quantum Field
Ontology associated with Eventualization Principle, which enables us
to explain the mutual relations, back and forth, between quantum fields
and various forms of particles in the localized form of the former.

1 Introduction

Extending the scope of our joint paper [24] whose essense is summarized in
1) and 2) below, we discuss in this paper the following points:

1) Starting from a specific problem of photon localization in the light
of Newton-Wigner-Wightman Theorem (Sec.2), we try here to clarify the
mathematical and conceptual relations among spatial points, localization
processes of physical systems into restricted regions in space (and time),
in contrast to the usual formulation dependent directly on the concepts
of particles and their masses (in a spacetime structure given in an a priori
way). In this context, Wightman’s mathematical formulation of the Newton-
Wigner paper plays an important role: On the basis of an imprimitivity
system on the 3-dimensional space, the absence of position observables is
shown to follow from the vanishing mass m = 0 of a free photon.

2) We encounter here a sharp conflict between the mathematically clear-
cut negative result and the actual existence of experimental devices for de-
tecting photons in quantum optics which is impossible without the spatial
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localization of detected photons. Fortunately, this conflict is resolved by the
presence of coupled modes of photons with material media which generates
non-trivial deviations of refractive index n from 1, or equivalently generates
the mass m > 0, in such typical example cases as “polaritons”, as will be
shown later (Sec.3.4).

3) Through the model example of polaritons, we learn that such funda-
mental issues as related with mass and particles as its carriers should be
viewed as something variable dependent on the contexts and situations sur-
rounding them. Thus, we need and can elaborate on highly philosophical
abstract questions like “what is a mass?” or “what are particles as mass
points?”, in mathematically accessible contexts. For this purpose, we cer-
tainly need to set up suitable theoretical and/or mathematical frameworks
and models so that they allow us to systematically control the dynamics of
our object systems coupled with their external systems. Once this coupling
scheme is established, the external systems can be seen to serve as reference
systems for the purpose of describing the object systems and the processes
carried out by them. Such a framework and methodology are available in
the form of the Tomita’s integral decomposition theorem (Sec. 4.3) viewed
from the standpoint of “quadrality scheme” based on “Micro-Macro duality”
(Sec. 3.2 & Sec. 4.2).

4) For instance, the delicate choice between 4-dimensional spacetime and
3-dimensional spatial setting up involved in Wightman’s theorem can be
naturally understood as the choice of pertinent variables to a given context.
In the light of Tomita’s theorem this issue is seen in such a form as the
choice between central vs. subcentral decomposition measures of a relevant
state. A satisfactory understanding of fundamental concepts of space (and
time) coordinates and velocities is attainable in the scheme and, at the same
time, crucial premise underlying such comprehension is the understanding
that these concepts are never among pre-existing attributes inherent in the
object system but are epigenetic properties emerging through what is to be
called the “eventualization processes” as will be explained in Sec.5. These
epigenetic aspects are closely related with the choices of different contexts
of placing an object system and the boundary conditions specifying various
different choices of subalgebras of central observables, reflected in the choices
of subcentral (or central) measures appearing in Tomita’s theorem (Sec.
4.3).

5) While the above explanation guarantees the naturality and generic-
ity of the polariton picture mentioned in 2), as one of the typical explicit
examples for making photons localizable, the freedom in choices of subcen-
tral measures clarifies their speciality in the spatial homogeneity of mass
generation. In fact, under such conditions that the spatial homogeneity is
not required, many such forms of photon localizations are allowed as Debye
shielding, various forms of dressed photons, among which cavity QED can
equally be understandable.



6) Along this line of thought, it becomes also possible to compare and
unify various other forms of localizations and of their “leakages” at the same
time: For instance, the presence of non-vanishing mass m can be viewed as
an index of timelike and spacetime-homogeneous parameter of leakage from
spatial localization as exhibited by the decay rate oc e™™" of correlation
functions in clustering limit. On the other hand, the decay width I'" in the
energy spectrum can also be interpreted as a time-homogeneous parameter
of leakage from chronological localizations of resonance modes (as exhibited
through the decay rate o e /2 of relaxation of correlations). (To be precise,
it is more appropriate to regard the inverse of m and I' as leakages.) The
tunneling rate o< y/|E — V| can be interpreted as the leakage rate of spatial
localization materialized by the potential barrier V.

7) The universality, naturality and the necessity of the present stand-
point is verified by the above considerations in terms of subcentral measures
and of the corresponding commutative algebras B. On the basis of the bidi-
rectionality between quantum fields and particles, moreover, such a unified
viewpoint will be meaningful that the microscopic quantum systems consist-
ing of quantum fields can be controlled and designed from the macro side
via the control of quantum fields.

8) To make sure of the above possibility, it would be important to rec-
ognize the constitution of the macroscopic levels in close relations with the
microscopic quantum regimes. This question is answered in terms of the
word, “eventualization processes”, which can be mathematically described
as the filtered “cones” to amplify the connections between Macro and Micro
(which is analogous to the forcing method in the context of foudations of
mathematics), with Micro ends given by the dynamics of quantum fields and
Macro ones by the pointlike events as the apices of cones of eventualizations.

2 Newton-Wigner-Wightman Theorem

In 1949, Newton and Wigner [15] raised the question of localizability of single
free particles. They attempted to formulate the properties of the localized
states on the basis of natural requirements of relativistic covariance.

Physical quantities available in this formulation admitting direct physi-
cal meaning are restricted inevitably to the generators of Poincaré group
Pl = R4 x Ll (with LL the orthochronous proper Lorentz group) which is
locally isomorphic to the semi-direct product Ha2(C) x SL(2,C) of the Jor-
dan algebra Hs(C) of hermitian (2 x 2)-matrices and SL(2,C), consisting of
the energy-momentum vector P, and of the Lorentz generators M, (com-
posed of angular momenta M;; and of Lorentz boosts My;). The problem is
then to find conditions under which “position operators” can naturally be
derived from the Poincaré generators (P, M,, ). In [15], position operators



have been shown to exist in massive cases in an essentially unique way for
“elementary” systems in the sense of the irreducibility of the corresponding
representations of 77_1 so that localizability of a state can be defined in terms
of such position operators. In massless cases, however, no localized states
are found to exist in the above sense. That was the beginning of the story.

Wightman [25] clarified the situation by recapturing the concept of “lo-
calization” in quite a general form as follows. In place of the usual ap-
proaches with unbounded generators of position operators, he has formu-
lated the problem in terms of their spectral resolution in the form of axioms

(i)- (i) -

(i) The spectral resolution of position operators: It is defined by a family
B(R3) 5 A — E(A) € Proj($) of projection-valued measures E(A)
in a Hilbert space § defined for each Borel subset A of R3, character-
ized by the following properties (ia), (ib), (ic):

(ia) E(A1NAg) =E(A)E(A);
(ib) E(Al U Ag) = E(Al) + E(Ag), if Al N Ag = gb;
(ic) E(R3) =1;

(ii) Physical interpretation of F(A): When the system is prepared in a
state w, the expectation value w(E(A)) of a spectral measure F(A)
gives the probability for the system to be found in a localized region
A;

(iii) Covariance of the spectral resolution: Under a transformation (a, R)
with a spatial rotation R followed by a spatial translation a, a Borel
subset A is transformed into RA + a. The corresponding unitary im-
plementer is given in § by U(a, R), which represents (a, R) covariantly
on F in such a way that

E(A) — E(RA +a)=U(a,R)E(A)U(a,R)™L.

Note that, in spite of the relevance of the relativistic covariance, localiz-
ability discussed above is the localization of states in space at a given time
formulated in terms of spatial translations a and rotations R, respectively.
To understand the reason, one should imagine the situation with the axioms
(1)-(iii) replaced with those for the whole spacetime; then the CCR relations
hold between 4-momenta p,, and space-time coordinates =", which implies
the Lebesgue spectrum covering the whole R* for both observables P and
2¥. Therefore any such physical requirements as the spectrum condition or
as the mass spectrum cannot be imposed on the energy-momentum spec-
trum p,, and hence, the concept of localizability in space-time does not
make sense.



According to Mackey’s theory of induced representations, Wightman’s
formulation can easily be seen as the condition for the family of operators
{E(A)} to constitute a system of imprimitivity ([12]) under the action of
the unitary representation U(a, R) in $) of the three-dimensional Euclidean
group SE(3) := R3 x SO(3) given by the semi-direct product of the spatial
translations R® and the rotation group SO(3). In a more algebraic form,
the pair (E,U) can also be viewed as a covariant W*-dynamical system
L>®(R3) A SE(3), [rar)(/)](x) := f(R™!(x — a)), given by the covariant

*-representation E : L¥(R3) > f — E(f) = [ f(x)dE(x) € B(9), s.t.
E(xa) = E(A), of the commutative algebra L>°(R?) generated by the posi-
tion operators acted on by SFE(3) characterized by the covariance condition:

E(1(ar)(f)) = Ula, R)E(f)U(a, R) ™ (1)
for f € L°(R?), (a, R) €SE(3).

As will be seen later, this algebraic reformulation turns out to be useful
for constructing coupled systems of photon degrees of freedom with matter
systems, which play the crucial roles in observing or measuring the former in
the actual situations. Thus Wightman’s formulation of the Newton-Wigner
localizability problem is just to examine whether the Hilbert space $) of the
representation (U, $)) of SE(3) can accommodate a representation E of the
algebra L>°(R3) consisting of position operators, covariant under the action
of SE(3) in the sense of Eq. (1).

Applying Mackey’s general theory to the case of three-dimensional Eu-
clidean group SFE(3), Wightman proved the following fundamental result as
a purely kinematical consequence:

Theorem 1 ([25], excerpt from theorem 6 and 7) A Lorentz covari-
ant massive system is always localizable. The only localizable massless ele-
mentary system (i.e. irreducible representation) has spin zero.

Corollary 2 A free photon is not localizable.

The essential mechanism causing (non-)localizability in the sense of Newton-
Wigner-Wightman can be found in the structure of Wigner’s little groups,
the stabilizer groups of standard 4-momenta on each type of Pl—orbits in
p-space.

When m # 0, the little group corresponding to the residual degrees
of freedom in a rest frame is the group SO(3) of spatial rotations. As a
consequence, “the space of rest frames” becomes SO(1,3)/SO(3) = R3. The
physical meaning of this homeomorphism is just a correspondence between
a rest frame r € SO(1,3)/SO(3) for registering positions and a boost k €
SO(1,3) required for transforming a fixed rest frame r to the chosen one r =
kro. The universality (or, independence for the choice the frame) of positions
is recovered up to Compton wavelength h/(mc), again due to massiveness.



Remark 3 Here the coordinates of rest frames just plays the role of the
order parameters (or, “sector parameters”) on each Pl—orbz’t as the space
of “degenerate vacua” associated with certain of symmetry breaking, which
should play the roles of position operators appearing in the imprimitivity
system.

In sharp contrast, there is no rest frame for a massless particle: Its lit-
tle group is isomorphic to the two-dimensional Euclidean group SE(2) =
R? x SO(2) (locally isomorphic to C x U(1)), whose rotational generator
corresponds to the helicity. Since the other two translation generators cor-
responding to gauge transformations span non-compact directions in distinc-
tion from the massive cases with a compact SO(3), the allowed representa-
tion (without indefinite inner product) is only the trivial one which leaves
the transverse modes invariant, and hence, the little group cannot provide
position operators in the massless case.

After the papers by Newton and Wigner and by Wightman, many discus-
sions have been developed around the photon localization problem. As far
as we know, the arguments seem to be divided into two opposite directions,
one relying on purely dynamical bases [8] and another on pure kinematics
[2], where it is almost impossible to find any meaningful agreements. Below
we propose an alternative strategy based on the concept of “effective mass”,
which can provide a reasonable reconciliation between these conflicting ideas
because of its “kinematical” nature arising from some dynamical origin.

3 Polariton as a Typical Model of Effective Mass
Generation

3.1 Physical roles played by coupled external system

In spite of the above theoretical difficulty in the localizability of photons,
however, it is a plain fact that almost no experiments can be performed
in quantum optics where photons must be registered by localized detec-
tors. To elaborate on this problem, we will see that it is indispensable to
reexamine the behaviour of a photon in composite systems coupled with
some external system such as material media constituting apparatus with-
out which any kind of measurement processes cannot make sense. For this
purpose, the above group-theoretical analysis of localizability of kinematical
nature should be extended to incorporate algebraic aspects involved in the
formation of a coupled dynamics between photons to be detected and the
measuring devices consisting of matters.

Our scheme of the localization for photons can be summarized as follows:

e Photons are coupled with external system into a composite system
with a coupled dynamics.



e Positive effective mass emerges in the composite system.

e Once a positive effective mass appears, Wightman’s theorem itself pro-
vides the “kinematical basis” for the localization of a photon.

From our point of view, therefore, this theorem of Wightman’s inter-
preted traditionally as a no-go theorem against the localizability becomes
actually an affirmative support for it. It conveys such a strongly selective
meaning (which will be discussed in detail in Sec.4) that, whenever a photon
is localized, it should carry a non-zero effective mass.

In the next subsection, we explain the meaning of our scheme from a
physical point of view.

3.2 How to define effective mass of a photon

As a typical example of our scheme, we focus first on a photon interacting
with homogeneous medium, in the case of the monochromatic light with
angular frequency w as a classical light wave. For simplicity, we neglect
here the effect of absorption, that is, the imaginary part of refractive index.
When a photon interacting with matter can be treated as a single particle,
it is natural to identify its velocity v with the “signal velocity” of light in
medium. The relativistic total energy E of the particle should be related to
v := /v - Vv by its mass mes:

F— _mesrc? 2)

2
v
1=

Since v is well known to be smaller than the light velocity ¢ (theoretically or
experimentally), mef is positive (when the particle picture above is valid).
Then we may consider mesr as the relativistic “effective (rest) mass of a
photon”, and identify its momentum p with
MeffV

e
ez

Hence, as long as “an interacting photon” can be well approximated by a
single particle, it should be massive, according to which its “localization
problem” is resolved. The validity of this picture will be confirmed later in
the next subsection.

The concrete forms of energy/momentum are related to the Abraham-
Minkowski controversy [1, 14, 4] and modified versions of Einstein/de Broglie
formulae [24].

Our argument itself, however, does not depend on the energy /momentum
formulae. The only essential point is that a massless particle can be made
massive through some interactions. That is, while a free photon satisfies

(3)

2 2 2
Efree — C Phee = 0? (4)



an interacting photon satisfies
E% — p* = mZect > 0. (5)

To sum up, an “interacting photon” can gain a positive effective mass, while
a “free photon” remains massless! This is the key we have sought for. We
note, however, the present argument is based on the assumption that “a
photon dressed with interactions” can be viewed as a single particle. We
proceed to consolidate the validity of this picture, especially the existence of
particles whose effective mass is produced by the interactions, analogous to
Higgs mechanism: Such a universal model for photon localization certainly
exists, which is based on the concept of polariton, well known in optical and
solid physics.

3.3 Polariton picture

In these areas of physics, the propagation of light in a medium is viewed
as follows: By the interaction between light and matter, creation of an
“excition (an excited state of polarization field above the Fermi surface)”
and annihilation of a photon will be followed by annihilation of an exciton
and creation of a photon, ---, and so on. This chain of processes itself
is often considered as the motion of particles called polaritons (in this case
“exciton-polaritons” ), which constitute particles associated with the coupled
wave of the polarization wave and electromagnetic wave.

The concept of polariton has been introduced to develop a microscopic
theory of electromagnetic interactions in materials ([6], [10]). Injected pho-
tons become polaritons by the interaction with matter. As exiton-phonon
interaction is dissipative, the polariton picture gives a scenario of absorp-
tion. It has provided an approximation better than the scenarios without
it. Moreover, the group velocity of polaritons discussed below gives another
confirmation of the presence of an effective mass.

As is well known, permittivity ¢(w) is given by the following equality,

A2k?
e(w)=n?= R (6)
and hence, we can determine the dispersion relation (between frequency and
wave number) of polariton once the formula of permittivity is specified. In
general, this dispersion relation implies branching, analogous to the Higgs
mechanism. The signal pulse correponding to each branch can also be de-
tected in many experiments, for example, in [13] cited below.

In the simple case, the permittivity is given by the transverse frequency

wr of exciton’s (lattice vibration) as follows:

2 _
(w) = e + T8t ~Eo0) )
u}T — W



where €5, denotes lim,, . €(w) and €5 = €(0) (static permittivity). With
a slight improvement through the wavenumber dependence of the exciton
energy, the theoretical result of polariton group velocity g—ﬁ < ¢ based on
the above dispersion relation can explain satisfactorily experimental data
of the passing time of light in materials (for example, [13]). This strongly
supports the validity of the polariton picture.

From the above arguments, polaritons can be considered as a universal
model of the “interacting photons in a medium” in the previous section. The
positive mass of a polariton gives a solution to its “localization problem?”.
Conversely, as the “consequence” of Wightman’s theorem, it follows that
“all” physically accessible photons as particles which can be localized are
more or less polaritons (or similar particles) because only the interaction
can give a photon its effective mass, if it does not violate particle picture.

4 Effective Mass Generation in General

4.1 Toward general situations

In the last subsection we have discussed that the interaction of photons with
media can cause their localization by giving effective masses to them. Then
a natural question arises: Is the exsistence of media a necessary condition
for the emergence of effectve photon mass? The answer is no: In fact, light
beams with finite transvese size have group velocities less than c.

In a recent publication [7], Giovannni et al., show experimentally that
even in vacuum photons (in the optical regime) travel at the speed less
than ¢ when it is transversally structured, such as Bessel beams or Gaussian
beams, by measuring a change in the arrival time of time-correlated photon
pairs. They show a reduction in the velocity of photons in both a Bessel
beam and a focused Gaussian one. Their work highlights that, even in free
space, the invariance of the speed of light only applies to plane waves, i.e.,
free photons.

From our viewpoint, this result can be understood quite naturally in
the light of the Newton-Wigner-Wightman theorem. As we have seen, the
theorem states that every localizable elementary system (particle) with spin
must be massive. It implies that photons in the real world should travel
less than ¢, in any conditions, which makes the probability distribution of
its position well-defined without contradicting with the presence of spin.
Hence, transversally structured photons should become slow.

The scenario also applies to more general settings. Any kinds of bound-
ary conditions with finite volume (like cavity), or even nanoparticles in the
context of dressed photons [17], will make photons heavier and slower, even
without medium!



4.2 Wightman’s theorem re-interpreted as the “basis” for
localization

Our general scheme of the localization for photons can be depicted as follows,
whose essense can be understood in accordance with the basic formulation
of “quadrality scheme” [20] underlying the Micro-Macro duality [18, 19]:

Localization of photons

f

Effective mass of photons = Change in kinematics
()
Dynamical interaction
between photons & external system

In order to actualize the physical properties of a given system such as pho-
tons driven by an invisible microscopic dynamics, it is necessary for it to be
coupled with some external measuring system through which a composite
system is formed. According to this formation of coupled dynamics, the
kinematics controlling the observed photons are modified and what can be
actually observed is a result of this changed kinematics, realized in our case
in the form of localized photons.

4.3 Tomita’s theorem of integral decomposition of a state

Before going into the details of mass generation mechanisms, we examine
here the theoretical framework relevant to our context. From the mathe-
matical viewpoint, an idealized form of constructing a coupled system of the
object system with an external reference one can be found conveniently in
Tomita’s theorem of integral decomposition of a state as follows:

Theorem 4 (Tomita [5]) For a state w of a unital C*-algebra A, the fol-
lowing three sets are in a 1-to-1 correspondence:

1. subcentral measures p (pseudo-)supported by the space F4 of factor
states on A;

2. abelian von Neumann subalgebras B of the centre 3, (A) = m,(A)" N
WW(A)/;

3. central projections C' on 9, such that

CQ, =Q,,  Cr,(A)C C {Cr,(A)CY. (8)

If u, B and C are in the above correspondence, then the following rela-
tions hold:
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(1) B = {m.(A) U{C}}';
(ii) C = [BQ,]: projection operator onto the subspace spanned by BQ,;

(iii) p(A1Ag--- Ay) = (Q] Tw(A1)C 7, (A2)C - - - Crry (An) Q)
fO’F A15A2a e 7ATL € A;

() The map r, : L(E, 1) — B defined by

(0] Ru(F)T(A)) = / dpu(w') (@) (A) (9)

for f € L®(E4,p) and A € A is a *~isomorphism, satisfying the
following equality for A,B € A:

ko (A) Ty (B)Qy = my(B) Oy (A) Q. (10)

Some vocabulary in the above need be explained: The space F 4 of factor
states on A is the set of all the factor states ¢ whose (GNS) representa-
tions 7, have trivial centres: 7m,(A)" N7, (A) = Clg,. This Fq divided
by the quasi-equivalence relation =~ defined by the unitary equivalence up
to multiplicity, F4/ ~ plays the role of sector-classifying space (or, sector
space, for short) whose elements we call “sectors” mathematically or “pure
phases” physically. Then Tomita’s theorem plays a crucial role in verifying
mathematically the so-called Born rule [22] postulated in quantum theory
in physics.

Via the definition A(p) := p(A), p € E4, any clement A € A can
be expressed by a continuous function A E ‘4 — C on the state space
E 4. Among measures on I 4, a measure u is called barycentric for a state
w € Ey4 if it satisfies w = fE.A pdu(p) € E4 and is said to be subcentral
if linear functionals [, pdu(p) and | E0A odu(o) on A are disjoint for any
Borel set A C FE 4, having no non-vanishing intertwiners between them: i.e.,
T [\ mp(A)du(p) = fEA\A 7o(A)du(o)T for VA € A implies T = 0. If the
abelian subalgebra B in the above theorem is equal to the centre B = 3, (.A),
the measure p is called the central measure of w, determined uniquely by the
state w and the corresponding barycentric decomposition w = | Fa pdu(p) is
called the central decomposition of w. This last concept plays crucial roles
in establishing precisely the bi-directional relations between microscopic and
macroscopic aspects in quantum theory, as has been exhibited by the exam-
ples of “Micro-Macro duality” (see, for instance, [18, 19]).

At first sight, the distinction between central and subcentral may look
too subtle, but it plays important roles in different treatments, for instance,
between spatial and spacetime degrees of freedom in Wightman’s theorem
concerning the localizability, as mentioned already after the theorem. In
this connection, we consider the problem as to how classically visible con-
figurations of electromagnetic field can be specified in close relation with its
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microscopic quantum behaviour, for the purpose of which most convenient
concept seems to be the coherent state and the Segal-Bargmann transform
associated with it. Since coherent states are usually treated within the
framework of quantum mechancs for systems with the finite degrees of free-
dom, the aspect commonly discussed is the so-called overcompleteness re-
lations due to the non-orthogonality, («|3) # 0, between coherent states
ala) = ala) with different coherence parameters o # f3.

We note that, in connection with Tomita’s theorem, a composite system
arises in such a form as A ® C(X) consisting of the object system A and of
the external system 3(C F4) to which measured data are to be registered
through measurement processes involving A. In this scheme, the universal
reference system X can be viewed naturally emergent from the object system
A itself just as the classifying space of its sector structure. Then, via the
logical extension [21] to parametrize the object system A by its sectors in ¥,
an abstract model of quantum/@lds @ : 3% — A can be created, constituting

a crossed product ¢ € A x U(X) (via the co-action of the structure group
U(X) of ¥). Thus, the above non-orthogonality can be resolved by the
effects of the classifying parameters of sectors ¥ in F4. As a result, we
arrive at the quantum-probabilistic realization of coherent states in such a
form as the “exponential vectors” treated by Obata [16] in the context of
“Fock expansions” of white noises. What is important conceptually in this
framework is the analyticity due to the Segal-Bargmann transform and the
associated reproducing kernel (RS) to be identified through the projection
operator P in L2(X,du) onto its subspace HL?(X,du) of coherent states
expressed by holomorphic functions on ¥ [9], where du denotes the Gaussian
measure.

As commented briefly above, we can find various useful relations and
connections of quantum theory in terms of the concept of “quantum fields”.
From this viewpoint, we elaborate on its roles in attaining a transparent
understanding of the mutual relations among fields, particles and mass in
the next section.

5 Quantum Field Ontology

5.1 From particles to fields

As we have discussed in Sec.4, the effective mass generating scenario applies
to general settings. Any kinds of boundary conditions with finite volume
(like cavity) will make photons heavier and slower, even without medium.
This fact itself leads to a paradoxical physical question — how can the
boundary condition affect a particle traveling in vacua? What is a spooky
action through vacua?

Our answer is quite simple: In fact a photon is not “a particle traveling
in vacua”. It is just a field filling the space time, before it “becomes” a

12



particle, or more rigorously, before it appears in a particle-like event caused
via the interaction (energy-momentum exchange with external system). As
we will discuss in this section, it is quite unreasonable to imagine a photon
as a traveling particle unless any kinds of interaction is there.

Based on the arguments above, we discuss the limitation of particle con-
cept in connection with a new physical interpretation of Newton-Wigner-
Wightman analysis.

To begin with, we should mention that this concept involves a strong
inconsistency with particle concept which seems to have been forgotten at
some stage in history. In fact, the concept of a classical massless point par-
ticle with non-zero spin cannot survive special relativity with the worldline
of such a particle obscured by the spin: Instead of being a purely “internal”
degree of freedom, the spin causes kinematical extensivity of the particle
which is exhibited in a boost transformation, as is pointed out by Bacry in
[3].

The result of Newton-Wigner-Wightman analysis can be understood to
show that this inconsistency cannot be eliminated by generalizing the prob-
lem in the context of quantum theory: A massless particle cannot be lo-
calized unless the spin is zero. Even in the massive case, the concept of
localization is not independent of the choice of reference frames. There is
no well-defined concept of “spacetime localization” as we have mentioned.

These facts are consistent with the idea that the position is not a clear
cut a priori concept but an emergent property. Instead of a point parti-
cle, therefore, we should find something else having spacetime structure to
accommodate events in point-like forms, which is nothing but the quan-
tum field. In other words, the Newton-Wigner-Wightman analysis should
be re-interpreted as “the existence proof of a quantum field”, showing its
inevitability.

5.2 From fields to particles: Principle of eventualization

This does not mean that particle-like property is artificial nor fictional. On
the contrary, point-like events do take place in any kind of elementary pro-
cesses of quantum measurement such as exposure on a film, photon counting,
and so on.

This apparent contradiction is solved if we adopt the universality of
the indeterminate processes emerging point-like events (energy-momentum
exchanges) from quantum fields via formation of composite system with ex-
ternal systems (like media or systems giving boundary conditions), even the
latter coming from the part of the degrees of freedom of quantum fields. Let
us call these fundamental processes as eventualization. From our viewpoint,
the most radical implication of Newton-Wigner-Wightman analysis is that
we should abandon the ontology based on naive particle picture and replace
it by the one based on quantum fields with their eventualizations.

13



The idea of eventualization may appear to be just a palliative to avoid
the contradiction between abstract theory of localization and the concrete
localization phenomena, but actually, it opens the door to quite natural for-
mulation of quantum physics. In fact, the notion of measurement process
can be considered as a special kind of eventualization process with amplifica-
tion. As we will discuss in a forthcoming paper [23], a glossary of “quantum
paradoxes” is solved by just posing an axiom we call “eventualization prin-
ciple”.

Eventualization Principle: Quantum fields can effect macro-
scopic systems only through eventualization.

In other words, we hypothesize that the notion of “macroscopic systems” —
including a Schrédinger cat— can be characterized, or defined, by the col-
lection of events, formed by perpertual eventualization.
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Abstract

A response theory was developed to describe a small-scale many-electron system within the
neighborhood of a nanostructure radiating longitudinal and transverse electric fields, essentially
the full degrees of freedom of the scalar and vector potentials (SP and VP). The coexistence of
the SP and VP incidents distinguishes such a near-field optical system from the ordinary optical
system, and is the motivation for equal treatment of both potentials as the cause of the response in
the electron system. Furthermore, the low symmetry of the system makes the electric and magnetic
responses indistinguishable, so it is essential to use a single susceptibility, instead of the ordinary
two susceptibilities, i.e., the electric permittivity and the magnetic permeability. Therefore, the
present theory developed a single susceptibility relating the scalar and vector potentials (as the
cause) to the charge and current densities (as the result). The Heisenberg operators of both linear
and nonlinear single susceptibilities are systematically given in terms of functional derivatives of
the action integral with respect to the SP and VP, and proofs for charge conservation and gauge
invariance are given in a general manner; this theory is free from gauge-fixing. To make the ground
state bounded in the non-perturbed system, it is essential to consider the quantum many electron
effect (exchange-correlation effect), and this is done by employing the fundamental idea of density
functional theory, instead of the ordinary unequal treatment of the SP and VP, i.e., remaking the

SP into a Coulomb interaction between electron charges.
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I. INTRODUCTION

Suppose that a small-scale many-electron system, a molecule for example, is exposed to
the longitudinal electric field and the transverse electromagnetic (EM) field radiated by a
neighboring nanostructure. Using the Coulomb gauge for a while, the scalar potential and
vector potential represent the longitudinal electric field and transverse EM field, respectively.
The coexistence of these two types of incident fields distinguishes such a near-field (NF)
optical system from the ordinary optical system; in the ordinary optical system, the electron
system of interest is located far from the light source and is exposed only to the transverse
EM field incident. As the first stage of investigation, it was assumed that the nanostructure
serves as a robust light source, which is insensible to the electron system of interest.

Here, the longitudinal electric field originates from the charge density on the nanostruc-
ture, obeys Coulomb’s law, has a non-radiative nature, and is localized around the nanos-
tructure, while the transverse EM field originates from the transverse current density on the
nanostructure, obeys Ampere-Maxwell’s law and Faraday’s law, has a radiative nature, and
may propagate far from the light source. Therefore, the longitudinal and transverse incident
fields are qualitatively different and should be treated separately and equally as the cause
of the response of the many-electron system in NF optics.

Up to now, there has been no such theoretical framework for equally treating the scalar
and vector potentials (the longitudinal electric field and transverse EM field). The reason
for this lies in the the many-body problem inevitably related to the NF optics via the
scalar potential (the longitudinal electric field). This fact has not been well recognized
in NF optics, although the problem of how to separate the cause of excitation from the
Coulomb interaction has remained for a long time[l]. In the usual Hamiltonian for a many-

electron system, the scalar potential in the Coul?mb gauge (the longitudinal electric field)

\/
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molecule

FIG. 1: A nanostructure yields a scalar potential, ¢(r,t) and a vector potential, A(r,¢) and these

potentials irradiate the neighboring many-electron system, e.g., a molecule.



is rewritten as the interaction between the electron charge density operators, and only the
vector potential is considered as the cause of the response. This unequal treatment of the
scalar and vector potentials is needed to consider the quantum many-electron effect (the so-
called exchange-correlation effect) to construct the ground and excited states as the proper
bound states in a many-electron system. This is the usual procedure and is compatible
with ordinary optical systems, where the electron system of interest is far from the light
source, and the scalar potential incident is negligible. By contrast, in an NF optical system,
this approach results in a difficulty of understanding the response to the scalar potential
incident, because both the scalar potential incident (radiated by the nanostructure) and the
inherent scalar potential (originating from the particle charge) are built into the two-body
Coulomb interaction, and the two contributions are indistinguishable. To make matters
worse, the Coulomb interaction in itself is so difficult to treat that it is often ignored,
without considering it includes the effect of the scalar potential incident.

To best understand the fundamental physics in NFO, it is essential to develop an adequate
response theory. For this purpose, this paper defines and characterizes a single susceptibility
equally associated with the scalar and vector potentials based on the action integral from
scratch.

The single susceptibility introduced below relates the EM potential (as the cause) to the
induced charge and current densities (as the result) , while the two ordinary susceptibilities,
i.e., the electric permittivity and magnetic permeability, relate the total electric and magnetic
fields (as the cause) to the polarization and magnetization (as the result), respectively.
There are two motives for employing a single susceptibility: (1) The usual constitutive
equations with the two susceptibilities gives relationships between redundant degrees of
freedom. (2) In low-symmetry systems, such as in NF optical systems with nanostructures,
it is essential to use the single susceptibility instead of the two ordinary susceptibilities. A
detailed explanation of the two points is as follows.

(1) The inapplicability of the two susceptibilities may be explained from a naive view
point. The essential source of the EM field is the three components of charge density
and the transverse current density. The longitudinal current density is excluded because it
can be determined through the charge conservation law, once the charge density is known.
However, the redundant components of the polarization and magnetization are introduced

as the source of the EM field, so that the associated constitutive equations using the two



susceptibilities include the constraint condition for the redundancy, of which the physical
meaning is not declared. This situation is physically unreasonable and should be fixed by
the constitutive equation using a single susceptibility associated with the proper degrees of
freedom.

(2) The need for a single susceptibiity in low-symmetry optical systems as first claimed
by Chol2, 3], who is one of the pioneers of non-local response theory from first principles
and who formulated a single susceptibility using the usual Hamiltonian for a many-electron
system. He derived a Taylor expansion for his single susceptibility, using the long wavelength
approximation (ka < 1, where 27/k is the light wavelength and « is the representative size
of the material) and has shown the term of leading order, O(ka)® , gives the electric per-
mittivity, and the term of order O(ka)? gives the magnetic permeability. This separability
of the electric and magnetic responses holds only in systems with non-chiral symmetry. In
a system exhibiting chiral symmetry, however, this separability does not hold and there
exists a mixing of electric dipole (E1) transitions with magnetic dipole (M1) and/or elec-
tric quadrupole (E2) transitions in the term of order O(ka)!. Furthermore, the term of
order O(ka)'is incompatible with the so-called Drude-Born-Fedorov theory, which extends
the two susceptibilities, adding the cross terms of the electric-field-induced magnetization
and the magnetic-field-induced polarization. Consequently, in low-symmetry systems, the
two susceptibilities including the Drude-Born-Fedorov-extension are irrational, and a single
susceptibility is essential.

The above two points mean that the two ordinary susceptibilities are logically unrea-
sonable in NF optics, although these has been practically used, for example, in numerical
calculations using the Finite-Difference Time-Domain method. For NF optics, there are two
approaches for the single susceptibility (or the non-local response function).

Cho formulated a single susceptibility that relates the transverse vector potential (as the
cause) to the current density (as the result), and applied it to various optical systems[4].
Additionally, a modification that considers the scalar potential incident (longitudinal electric
field incident) in NF optical systems has been proposed[5]. Keller formulated another single
susceptibility within the non-local linear response theory, and it relates the transverse electric
field and the incident part of the longitudinal electric field (as the cause) to the current
density (as the result) [6].

In the above two formulations, the gauge is fixed, and the scalar potential (or the longitu-



dinal electric field), except the incident contribution, is rewritten as the two-body Coulomb
interaction in the usual manner. Therefore, the response to the scalar potential, in prin-
ciple, can be rigorously considered via the Coulomb interaction if the many-body problem
is properly solved, whereas the response to the vector potential incident is treated in the
perturbative manner. In this approach, it is essential to solve the many-body problem, in
particular, for the nonlinear process related with the scalar potential (the longitudinal elec-
tric field). Even if the Coulomb interaction is properly considered, unequal treatment may
make it difficult to regulate the perturbation order of the responses and to understand the
role of the scalar potential incident.

The purpose of this paper is to define and characterize the single susceptibility of a many-
electron system, equally treating the scalar and vector potentials to explore the physics in
NF optics.

The contents of this paper are as follows: §II defines the linear and nonlinear single sus-
ceptibilities equally associated with the scalar and vector potentials, as functional derivatives
of the action integral. §III shows that the present susceptibility respects both charge con-
servation and gauge invariance, in a general manner. §IV derives the Heisenberg operators
of the linear and nonlinear single susceptibilities. §V shows that the present theoretical
scheme may be supported by density functional theory to prepare the non-perturbed state
as well as a complete set of many-electron states. §VI provides a summary of this work.
Two appendices are included: §A provides some details of a calculation in §II. §B gives an
explicit check for the charge conservation and gauge invariance of the linear and nonlinear

single susceptibilities.

II. DEFINITION OF NEW SINGLE SUSCEPTIBILITY

Based on the Lagrangian formulation of non-relativistic quantum electrodynamics, we
define the single susceptibility, which relates the scalar and vector potentials (the cause) to
the induced charge and current densities (the result). Furthermore, it is shown that this
susceptibility guarantees that charge conservation and gauge invariance hold; see the next

section. The action integral for non-relativistic quantum electrodynamics is:

I[QZJZ{,QZJQ,Qﬁ,A] EImat[@ElaaaaqﬁaA] +IEM[¢> A]a (1)
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where m and q(= —e) are the electron mass and charge, ¢ is the speed of light, ¢, A are the
scalar and vector potentials, di, @Ea are the electron field operators with the spin state a (one

p(EXT) §(EXT)

or other charge and the current densities, which yield the external electric and magnetic

of the two spin states; so called "up” and ”down” states), and are the nuclear
fields, respectively. A static auxiliary potential vAUX)(z) is null for now, but is introduced
here for later discussion of the density functional theory to consider effectively the quantum
many-electron effect (the exchange-correlation effect) ; see §V. ¢ is an antisymmetric
tensor, and the Einstein rule is used for indices of vector and Grassmann fields, that is,
summation should be executed over repeated indices. At this first stage of investigation,
the interaction between spin polarization and the EM field is ignored. The soundness of the
above action integral is confirmed by its Euler equations, which will soon be derived.

The electron field operators are considered as quantized Grassmann fields. The Grass-
mann field satisfies [1)q(r, t),zﬂg(r’ ,t)]+ = 0 [8], and corresponds to the ”classical” field of
the electron. These operators become the creation and annihilation operators of the electron
in quantum theory (the quantized Grassmann fields) if one introduces the anti-commutation
relation: [ty (r,t), 1%(1"’, )]y = 0*(r — r')das.

The action integral is composed of two parts: one is the action for the matter (including
the interaction between matter and the EM field) 7y 4+ [@El, Vs &, A], and the other is the ac-
tion for the EM field Zgy[¢, A]. Applying the extremal (optimizing) conditions with respect
to @Ea(:ﬂ) ,di(m) leads to Heisenberg’s equation, and optimizing with respect to ¢(z), A(x)
leads to Maxwell’s wave equations:

0=c 51;&(%)\51 =c 51&2(55)\52111%
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In Egs.(4) and (5), the left- and right-hand functional derivatives with respect to the Grass-
mann field are executed, respectively[8]. In Eqs.(6) and (7), the following definitions are

introduced for the electron charge and current densities, respectively:

s T
o) = ~5 T = 0l a)n(o), (5)
(o) = eIt = 50k (50~ 0A@) ) da(e) + b )

The charge-conservation law below holds, and is checked through explicit calculation:
In the four-element representation, Eqs.(6) and (7) become:

(0%,0 = 0"0,) A"(z) = — (7" (x) + D (@), (11)
where j’# = (Cﬁaj)a ju = (Cﬁa _j)>

Al = (¢7 CA)7 A,u = (¢7 _CA)v

oH = (]./Cat, —V), 8u = (]./Cat,V),

O=0"9, =1/c* 0} — A etc. (12)

Although Lorentz invariance is not maintained in the non-relativistic theory, we use the
four-element notation to simply represent charge conservation and gauge invariance. For
example, Egs.(8)-(10) become:
() = =P ———Tat, 13
7" () A, (z) mat (13)

0" () = 0. (14)
The action integral, Eq.(1) is invariant under the following gauge transformation:

At(z) — A¥(x) 4 cd"n(x),

bal) = RO (2),  Pl(x) = Pl (2)e T, (15)
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From the point of view of Noether’s theorem[7], the gauge invariance of the action integral
is the cause of the charge conservation law, Eq.(10) or Eq.(14).
Let us separate the EM field into two parts:

At (z) = AOR(z) + AAM(z), (16)

where A is the static, initial EM potential satisfying Egs.(6) and (7), and AA*(z) is
the perturbative EM potential. Under this variation of the EM field, let us re-optimize
the action for matter, Z;y 4t [’l/A):L, @Ea, AM]. That is, we re-optimize the electron field operator
satisfying Eqs.(4) and (5) under AO# + AA#(x). In the above procedure, the variation of

the action for the matter is expressed by the total functional derivative of A*(z):

) ~ o
mfmat [WL[A"], 1alAY], A”]
_ g 4 ,5@2;&(‘%/) W 4, .1 n / &Zja(l’/)
- 5AM([L’) explicit Imat + /d z 5AM(ZL') (5¢a(l’ )\5Imat + /d z 5Imat/5¢a($ ) 5AM(ZL’)
= (A0, (17

C

where the first term in the second expression is the variation explicitly caused by the pertur-
bative EM field, and the second and third terms are the implicit variations, created through
re-optimization of the field operator to satisfy Eqgs.(6) and (7) under the perturbative EM
field. The last expression is derived using Eq.(13), Egs.(4) and (5). The above equation
reveals that the first order total functional derivative of the action of matter is simply the
current density. Furthermore, the second order total functional derivative is calculated as

follows:

) ) . .
1, 1at [wl [AV] >wa [AV] ?AV]
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) 51&T (@) -
T, +/d4{E/ @ 5w(]; 2N\
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, (18)
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where the second and third terms in the second expression are 0. Actually, the integrand of



the second term is:

Y 61&2(:6/) 7 / 5¢L($,) 0 N /
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The first term in this equation is 0 because of Eq.(4) under the initial EM potential, and the

second term is 0 because of the re-optimization of the field operators under the perturbative
EM potential. That is, Heisenberg’s equation holds for any EM potential. In the same
manner as for higher order total functional derivatives of the action of matter, the following
extension of Eq.(18) holds (see Appendix A for details):

0" Tt [PHIA7]  $a[A], A] I S G
SA#n (z,,) - - 0AM (21)0 A, () 2 SAR(xy,) - 0 AR ()

(19)
Av=A0O) Av=A0O)

To define the single susceptibility, suppose the system under the initial EM field A®#(x)
is exposed to the perturbative EM field AA#(z). The initial EM field A" is a solution
of the coupled equations Egs.(4) and (7), i.e., Heisenberg’s equation and Maxwell’s wave
equations, and is assumed to be a static solution existing in the ground state. On the
other hand, the total EM field A©@* 4+ AA* is not necessarily a solution of Maxwell’s wave

equations, Eqs.(6) and (7), that is, AA* is introduced as a virtual variation. The induced

current density is the variation from the current density under the initial EM field:

(23 [AD” + AAY) = 5 (3 [AO"])

fa 57 (z:[4°])

p1
(514“1(.]71) AA (xl)

A =AW
1 4 4 [AV]) w1 n2
+ 5 /d :cl /d Mm - MM(@) AAﬁ)y (1) AA¥2 (1)
AA (1) A A2 (25) A A" ()

4 4 4 ( [A"])
+ /d X1 /d ) /d X3 514“1 xl 5AM2(I2>5AM3(':U3) Av=A0)v

- (20)

From Eq.(19), the linear and nonlinear single susceptibility operators are defined as:

87" (; [A"))

oM e
X (2,21) = SAM (1)

Av=A00)v
2 521111335
0A, ()0 AM (1)
1 8%k (s [AY])
/\u _ )
V(000 22) = g1 S V5 A ()

: (21)

Av=A0O)v

)
Au:A(O)lI
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= BT mat (22)
T2 GAL ()0 AR (21)0 A (22) | 4 o
. I Ce% )
H =
VB0 00) = S S oA )|
2 n+1
_ ¢ 0" Tat ’ (23)
n! 0A,(x)dAM (21) - - AP (20) | 4u_sco)w

The susceptibility is defined using a small amount of the virtual variation, AA*. That is,
the EM field does not in general satisfy its Euler equation, Eq.(11), while the electron field
operators satisfy Eqs.(4) and (5). To evaluate the real EM field, AA* must be determined
and a further procedure is required to solve the coupled equations, with the constitutive
equations in terms of the susceptibility and Maxwell’s wave equations Eqs.(6) and (7). This

procedure is provided in a self-consistent manner, established by K.Chol[4].

III. CHARGE CONSERVATION LAW AND GAUGE INVARIANCE OF THE
SINGLE SUSCEPTIBILITY

In the last expressions in Eqs.(21)-(23) the coordinates zi,xs,--- for the cause (the
perturbative EM field) and the coordinates x for the result (the induced current density)
are symmetric. Charge conservation for the induced charge density holds to each order of

the perturbation; this is described by the derivative of the coordinate for the result, x:
OuX!yy (20, ) = 0. (24)

This symmetry of the coordinates between the result and the cause leads to the following

equation concerning the derivative of the coordinate for the cause, e.g., x; :
o Xt (a0 ) = 0. (25)

Equation (25) means that the susceptibility guarantees that gauge invariance is respected.
That is, the resultant charge and current densities are independent of the chosen gauge. To
confirm this fact, consider the convolution integral with the single susceptibility and the

perturbative EM field, in a certain gauge, e.g.,

Jaten )24 1), (26)

11



A gauge transformation of AA to AA’ in another gauge is expressed as :
AAM (21) = AA™ (1) + c 0" n(x1), (27)
where 7 is the gauge function. Equation (26) leads to:

/d% R (@00, ) AAR ()
_ /d4:)31 X (T, DAAM (21) — c/d4x1 o G 2 SRR 1/ 62

_ /d%:l (1, ) AA (), (28)

The contribution of the gauge function vanishes in the convolution integral. Thus, the gauge
of the perturbative EM field may be freely selected. This means that the susceptibility is
independent of the chosen gauge and, in practice, one may select a gauge that is most

convenient for calculation.

IV. HEISENBERG OPERATOR OF THE SINGLE SUSCEPTIBILITY

In this section, the formula for Heisenberg operators of the linear and nonlinear sin-
gle susceptibilities is given using an expansion of the retarded product in Hamiltonian

formulation[9]. The Heisenberg operator of four-element current density, i.e., JMx) =

(ch(x), (@) is:

cqil (z) (@) for pu=0,
D () =L (7—7(9“ - gAﬂ(z)) balz) +he. for pu=1,2,3.
2m \ ¢ c

"z) =

(29)

In Eq.(2), if the factor ihthl () of the first term is regarded as the canonical momentum
of ﬁa (x), then the Hamiltonian density may be determined as the Legendre transformation

from the Lagrangian density, that is:

o= e o (Lo-aa) it (30— 040 ) dalo) + 00(0) dL)ala).

—1

(30)

This Hamiltonian governs the motion of electron field operators. Assuming that the initial

EM field ¢©, A© is the static EM field existing in the ground state of a many-electron

12



system, the Hamiltonian, H may be separated into a non-perturbative part, HO and a

perturbative part, V as follows:

A9 = 60 5 (L0-aa@)) ibw) - (50~ 040 @) dule) +960) dL )l
oA @) L)), @1
V()= [ - 1O = /d%@(x),
~ [ass {(cb(:v) ~60@)) b () ()

310 2 (20 0a%0)) o) 41
+% (Ai(:c) _A© (x)) (4il2) = AV(2)) gl (2)da(x)}
_ /dsx {1 (A (x) — AO#(z)) jﬂ(az)’

S 3 (A (@) = A0 (@) (Aw(a) = AD (@) Jo(a) } (32)

A=A0)

< 1 forp=p"=1,2,3,
where 6/ = p=n (33)
0 otherwise.

The auxiliary potential, v‘AU%)(z) effectively represents for the quantum many-electron effect
(the exchange-correlation effect), ; this fact will be explained in the next section. The tensor
Eq.(33) represents the non-relativistic effect. Actually, this tensor is the analogue of the
four-element Kronecker delta, but the time and spatial coordinates are inequivalent.

Here, the field operators in the interaction picture (the asymptotic field operators)
DT B8 are governed by the non-perturbative Hamiltonian H© and coincide with the
field operators in the Heisenberg picture, @é, ﬁa at the infinite past time, { — —o00, assuming
the adiabatic switch-on. The time-evolution operator U (t, —o0) relates the operators in the

two pictures as follows:

da(w) = U7t ~00)i" ()0 (¢, ~00), (34)
dl(x) = U (¢, —o0) M (2)U (t, o),
where  U(t,—o0) = lim U(t,tp) = lim T Jigd V(m)(t)’

to——o0 to——o0
V() = V([T $8mT: )
Combining Eq.(34) and Eq.(29), the four-element current density operator in the interac-
tion picture may be defined as: @ #(z) = (¢p@(x), j%(x)). These charge and current

13



densities do not satisfy the charge conservation law, except for A = A© and are merely
convenient tools used for obtaining the expansion of the retarded product of the Heisenberg

operator.

) = U7t —o00)) M) (t, —o0), (35)
quﬁﬂz ( )d’ozm( )

for u=0,
Gy = 4 y
@) (52 - Lar(a) ) @) + e for =123

(36)

To obtain the perturbative expansion (the retarded product series) of the Heisenberg oper-
ator, let us introduce an operator in the intermediate picture, where U (t,to) will be used

instead of U(t, —o0):

Pt (zitg) = UM (t,to) b (2) 9™ (2)U (t, o),
)

e(xite) = U (t o) 25{,1 " (x ( . — qAi(z )) B0 ()0 (¢, 1) + hec..

The corresponding four-element current density is

J* M (x3t0) = (¢° (3 t0), J* (23 10))

As ty — —oo, these operators coincide with those of the Heisenberg picture, while at ¢ty = t,

they coincide with those of the interaction picture:

~

3o (@5 —00) = j*(z), (37)
) = (). (38)

Next, let’s investigate the time evolution of j*# as a function of .

0" (23t0) = {0, U (t,10) 1 " (2)U (8, ¢ Tt 10)] M (2){0, U (1, 0) }

)+
= V()T (1) <>0<t to) + 0 (1, 10)J (@)D, 10) V0 1)
—1

= — | (@), VI (¢
il (z3t0), (to)

Integrating over [ty, t], approximating iteratively using Eq.(38), and changing the region of
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multi-integration, we obtain:

JMate) = () +

ih J,,
+ (%)2 /t an /t:dtg [[70(@), Vo t3)] 7 1)
+ (%)3 /to tdtl /t:dtQ /t:dtg [H}“"W(x),\?(’m(tg)} ,V“")(tQ)} V(m)(tl)} +

th Jy,
1 2 t t1 . R
- S(in) p (in) (in)
w (i) fan oo w] o]
1 3 pt t1 t2 R ~ ~
1 (in) (in) (in) (in)
+<m) /todtl/to dtg/todtg,[Hj (@), V1)) V0 1)] T 1] +

Then, taking the limit t, — —oo, the above equation yields the retarded product of the

Heisenberg operator, as follows:

) = @) g [t [1000), 60w

t1€( ooct]
1\° » . .
+( ) d'z, / d'ay [ [0 (@), 00 ()] 607 (2)]
ihe ct1€(—o0o,ct] J cta€(—oo,ctq]
( ) dle, / diz, / diz H[j“nw(x),ﬁw(xl)} ,@@”)(@)] ,@<m>(x3)]
ihc ct1€(—oo,ct] J cta€(—o0,ct1] J ctz€(—o0,cta]

where V(i")(t) = /d?’:z o ()

~

The quantity V@, 6 in the above formula is Eq.(32), with Vs @y being replaced by
D™ M T Next, let us derive the Heisenberg operator of susceptibility, by means of the
functional derivative of Eq.(39) by the EM potential. In Equation (39), the dependence of
the EM potential through 7@ #(z) in Eq.(36) is of zeroth and first order(y € {1,2,3}), and
dependence through ¢ (z;) is of first and second order. The linear single susceptibility

operator comes from the A'-dependence, which exists in the first and second terms of Eq.(39)
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s (in 1 ~(inl ~(inl
25“ 0"z — 1) JO0 () + ——0(ct — ctr) | 5O (), ) (1) |, (40)

mc the? H

im0 p( .y _ S
where V" H(z) =g () s

The Heisenberg operators of the nonlinear single susceptibilities, to second and higher
order, are as follows. To avoid any confusion in the case of two times coinciding, the long

and explicit expressions are given, without making use of the time ordering operator.

8%j+ (x)
20 L (T, w1, 30) =
pp 1, T2 A (21)0 Ar2(x5) A
_ 1 g _ _ . (- ) [JEn00(z), im0
=53 {5(01& ct1)f(ct — cty) 6", 67 (x — 1) [ (x), ) (Iz)} (41)
+6(ct — cte)f(ct — cty) 5” 0%z — 2 [ (n0)0 (g, 7(in0) (:)31)}
+ 9(0t - Ct1)5(0t1 - Ctg) p1 “2 .fL’l — LE‘Q |:j(2n0 mO (Il)] }

1 ? ~(in ~(in “(in
+ (o) ot = ctptet — o) [0 j o] Sg(xz)]

4 0(ct — cty)0(cty — cty) Hj(mo)“(:z), jim0) (xz)] , 5@"3)1(9:1)} } .

525+ (x)
o =
IRy pianss (5 L1, T2, 3) O A (21)6 Ar2 (12)0 Aks (23)

A=A0)

1 —q 2
= ez 2 42
ihc? (mc2) (42)
— — _ SE 83 (p — IS _ (in0) 0 ~(in0)
O(ct — ctz)d(ct — ct1)d(cty — ctz)d”, 6°(x — 21)0 1o 150° (T2 — T3) [] (), 7" (22)

—

+ 0(ct — ct1)d(ct — cts)d(cty — cta)d, 6% (@ — 23)0 w0 (21 — 2) [3<2‘"0>0(x),j<i"°2)(a;1 ] }

1Y e
thc?2 ) mc?

H0(ct — ct)d(ct — cta)3(cty — cty)3", 5% (& — )5y 0 (5 — 1) {3@‘”0”(:5), j““‘%(%)}
)

+

{(ct = ctr)o(cts — cto)0(cts — cts)5",,0%(w — 1) [ [16790(@), 7% (22)] 70 (23)|
+0(ct — ct1)B(cty — cts)B(cts — cta)d, 3 (x — 1) [ [700(@), J9 (25)] , 70O ()
+d(ct — cty)0(cty — ct3)0(cts — ctl)g“mé?’(z — 1) - '3(m0)0(x)’5(m2)3(x3)_ ’j(mg)l (x1)
+6(ct — cty)0(cty — cty)0(cty — ctg)g“mé?’(:v — To) — 'j(m())o(x)’](mg)l(xl)- ’j(mg)g (x3)
+0(ct — ctg)B(cts — ety )B(cty — cta)d 3 (x — w) [ [700(@), J90 (21)] , 70O ()
F0(ct — cts)0(cts — cta)0(cty — et )0 3 (x — xs) [ [700(@), 79 (29)] , 70O ()




F(ct — cty)3(cty — cta)B(cts — cts)p, 10 (21 — 22) | [ 7O (), 15D (21)] , T ()]
F(ct — cta)3(cts — cts)O(cts — 1)y, s (25 — w3) | [ 77O 2(), 19D (22) ] , 56O (1)
H(ct — cts)0(cts — cty)0(cty — cta)dyy 0% (w5 — 21) | [ 70O 2(2), 39 (5)] , TG ()]
(et — ct1)0(ch — cta)dcts — ot)dys ot (23 — s) | |70 (2), 5 (21)| 30 (22)]
(et — ct2)(cta — ctg)dcty — ot)dyy o0 (5 — 1) | |70 (2), J0 (22| 70 (23)]
O(ct — ct3)0(cts — ct1)d(cty — ct)d,, 0% (21 — 22) H}Onow(x), 5m0) (xg)} , 50 (xl)] }
1 3

T h—)

O(ct — ct)0(cty — cta)B(cty — cty) || | (@), 99 (21)] 50 (22)] 58 ()|
+0(ct — cty 560 (@), 560 ()], 60 (5)] , 569 (2

>
—

Q

i
)

|

QO

=
=

The charge conservation,Eq.(24), and gauge invariance are respected in Equations (40)-(42).

This fact is successfully checked in §B.

V. A REPRESENTATION OF THE SINGLE SUSCEPTIBILITY USING EIGEN-
STATES BASED ON DENSITY FUNCTIONAL THEORY

The linear and nonlinear single susceptibilities are the expectation values of the corre-
sponding operators, Egs.(40)-(42), using the ground state in the non-perturbed electron
system, which is specified by the simplified conditions in this paper:

Az) =A@ =0, jBD () =0, o) =0¢"(z)and pBXD(z) are static.  (43)

Let us explain how density functional theory[10, 11] may allow us to prepare such the ground
state and the complete set of the states in the electron system. For that purpose, we need the
electron field operators together with the scalar and vector potentials satisfying the coupled

equations, Eqs.(4)-(9). However, in the semiclassical treatment of the present theory, Eqs.(8)
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and (9) are replaced with their expectation values using the ground state(, which we seek
now on). Due to this procedure, the quantum many-electron effect, the so-called exchange
correlation effect is ignored. Therefore, the solution of Eqs.(4)-(9) as it is may not reproduce
the electron charge density of the proper ground state, pgs(r), which is obtained using the
ordinary Hamiltonian including the two-body Coulomb interaction, eliminating the scalar
potential under the Coulomb gauge. Such the electron density pgs(r), in turn, brings about
the proper scalar potential ¢(®(z) under the Coulomb gauge. Suppose that the proper
electron charge density pgs(r) is already known under the ordinary Hamiltonian.

Now, we like to seek for the ground state |0) in need, adjusting the auxiliary potential

vAUX)(r) to make the electron charge density fit the proper one:

{0lp(2)]0) = pas(r). (44)

Such a situation in Eq.(44) is assumed by Kohn and Sham in the density functional
theory[11]. That is, Egs.(4) and (5) are equivalent to Eq.(2.8) in Ref.[11] [the Kohn-Sham
equation (KS equation) ], if vAUX)(r) is regarded as the so-called exchange-correlation po-
tential.

For details, one may prepare the spin-orbit function g, (r,o) (k, a stands for the orbit
and spin states, o is the spin coordinate) as the eigenstate of the KS equation with the

eigenenergy fuwy. Under the conditions,Eq.(43), the KS equation is,

1 A

h
0= (hwk — qu(o)(r) - %;az . ;az - U(AUX)(r)) kaa(ra U)> (45)

where vAUX) (1) is set to the exchange-correlation potential. Then, thy(z) = Yk Pralr, 0)ag,
satisfies Eq.(4) under the condition Eq.(43), where a, is the operator to annihilate the
electron belonging to the spin-orbit ¢y, (r,0). Then, the ground state with the electron

number n in the present theory is constructed as the single Slater determinant,

0) = % [Telue). (46)

where |vac) is the vacuum state, and the indecies ka scan over the n spin-orbits from the
lowest eigenenergies. Furthermore, under the fixed vAY¥)(r) and ¢ (r), one may consider
all the possible combination of n spin-orbits and obtain the normalized orthogonal complete

set {|m)lm =0,1,2,---} in terms of single Slater determinants.
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On the above logic, one should know the proper electron charge density pgs(r) beforehand

to determine vAU¥)(r)

, which is the universal functional of the electron density[10, 11]. In
practice, however, one may solve the KS equation, possibly under the local density approx-
imation for vU¥)(r), and reconsider the resulting charge density as pgg(r).

The expectation value of the single susceptibility operator is, (0[x*, ..(%, 21, -)|0), and,

for example, the linear susceptibility becomes:

~ —q x ~(inl
(0]x",, (,21)|0) =3 o, 6% (x — a1) (017490 (2)|0)

¥ zgb(et — ) (0] [1670 (), 57 ()] 10). (47)

Next, to evaluate the products of two (or more) current density operators, e.g., the second
term in Eq.(47), we may use the projection operator 1 = > Im){m|. Now, the expectation

value in the second term of Eq.(47) becomes,

(O] [ (), 55 )] 10)
EZ{me) ()l (ml ) (1) |0) = (0L "2) () fm) m] 1474 () 0) }
>

©) in 1 f(0) ) in ©)
(}E,réo{ O|eer (t=t0) 5(n0) p ()| pmg, €7 5 1O (t— t°)|m><m|em (ti— to)]( 0) ) (21)]1,= temH (t1—to) 10)

@ n @ =1 F10) (t—to) * (in )
= (0T A0 ()] gy e O ) e 7 A GO0 )y 010 ) |
) N - 5 (in in
:Z{em(Em E0) (=) (0] 5600 (), [m) (| 50 (1) ]y =0 0)

B ezﬁ (Em Eo)(t t1 <O|j(zn0 (xl)|t1 —oo|m><m|](ln0 ( )|t:_oo|0>} (48)

If the convolution integral with the perturbative EM field is performed, the energy denomi-
nator will appear.

In the above theoretical framework, |m)’s are simply members of the complete set, and do
not carry any physical meaning of excited states of the many-electron system. Considering
that the density functional theory concerns only the ground state of the many-electron
system, the above treatment is a sound application of density functional theory to the
response theory adequate for near-field optics.

As a summary, the quantum many-electron effect is temporally ignored in the present
semiclassical theory, but is compensated with the support of the density functional theory.

In other words, the scalar potential inherently existing in the electron system is separated
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as ¢ (z) and vAY¥)(r), and the scalar potential incident may be treated equally with the

vector potential incident. Note that, ¢(® (z) is under the Coulomb gauge but the scalar and

vector potential incidents may be gauge-free, that is, the present response theory is still free

from gauge-fixing.

For further refinements in the future, the prerequisites for the density functional theory

is worth noting:

VI.

e The electron density can be considered as the elementary variable of the universal

functional determining the ground state energy in the many-electron system[10], if
the electron density belongs to the domain, where the density is represented by a
wavefunction of n electron state. How to specify such the domain is known as the

representability problem[12].

In principle, the exchange-correlation potential, e.g., that under the local density ap-
proximation, can be defined in the system with the slowly-varying electron charge

density[11].

SUMMARY

. Aiming to investigate electron response in NFO, we define the linear and nonlinear

single susceptibilities, equally considering the scalar and vector potentials as the cause

of the response.

. It is shown that the present single linear and nonlinear susceptibilities satisfy charge

conservation and gauge invariance.

. The linear and nonlinear susceptibilities in the form of Heisenberg operators are derived

by means of the functional derivatives of the action integral of the matter with respect

to the scalar and vector potential.

. It is shown, in principle, that the density functional theory may be used in the non-

perturbed system and support to prepare the ground state and a complete set of states,
which in turn are used to evaluate the expectation values of the operators of the linear

and nonlinear susceptibilities.

Some remaining problems meriting further investigation include:
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1. Applying the present linear response theory to a NF optical sysem to show a difference
in response to the longitudinal electric field (the scalar potential) and to the transverse

electric field (the vector potential).

2. Developing a practical simulator for the many-electron system in NFO, using the

present response theory with the support of the density functional theory.

3. Extending the response theory to treat the spin-polarization system in NFO, based on

the Pauli or Dirac equation.

4. Developing a phenomenological theory of the single susceptibility, which can aid exper-
imentalists in NFO, providing a substitute for the electric permittivity and magnetic

permeability of ordinary optics.
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Appendix A: Optimization of Electron Field Operators Under Arbitrary EM Po-

tential

Under a given EM potential, A", the electron field operator optimized to satisfy Eq.(4)
is considered as the functional of A”, i.e., Vo (x; [A¥]), 9] (2; [A”]). Then, the next equation
holds for n =0,1,2,---:

5n

5AU’7L (:L'n) . 6AN1 (:I;l)
671

OA#n () -+ SAM (1)

5@%(55,)\51111&‘5 =0, (A1)
Av=A0)v

5Imat/5¢a($,) =0. (A2)
Av=AO)v

Proof: Equation (4) should be hold both under A(®)”(non-perturbative EM potential) and
under A 4 AAY therefore,

St (2)\6Z, =0,
1%( >\ mat (o Db, AV )= (ha [AOY + AAY] L [AOY + A AY], AOV L A AV)
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Taylor expansion leads to:

=17, 9 (00N T A A o
;ﬁ/ .fl)'n/ xldA#n(g:n)éA”l(xl) (:1;‘1) (,’L’n)— 3

(oD AV )= (ha [AO¥] L [AO], AO))

Considering this equation as the identity with respect to AA*(x) results in Eq.(Al). Equa-

tion (A2) is proved in the same manner.

Appendix B: Charge Conservation Law and Gauge Invariance of Linear and Non-

linear Four-Element Single Susceptibility

To show that four-element linear single susceptibility guarantees the charge conservation
law Eq.(24), suppose the four-element divergence of Eq.(40), considering Ouj'(ino)“(z) =0,

OuX"y, (T, 1) = % d(ct — cty)d*,, 0, (53(93 - fl)j(i"0)0($)> (B1)

1 ~(in “(in
o 0(ct —ct) [J( 00(z), j1 2)1(561)]

= 0.

In the second term of the second hand, we use the following commutation relationship at

the same time :

5t — cty) [ 400z, 500 (1) | = —ihczn;—cqzé(ct—ctl)gﬁlﬁu (53(93—:51)5@"0)0(9:))32)

- _mgn;—;a(ct — )0 (8,0%(x — 1)) JO0 ()

The proof of Eq.(B2) is as follows: If y; = 0 in the left hand side of Equation (B2), it is the

commutator between charge density operator at the same time, and is zero.

j(inO)O(z)’j(mg) (xl)]t _ C2q2 [@El(:v)@@a(if) , &l(;pl)r{z;a(;pl) =0. (B3)

1=t t1=t

One may check Eq.(B3) by a straightforward calculation using the anti-commutation relation

of electron field operators at the same time,

ale), G| =),

Next, if 3 = i € {1,2,3} in the left hand side of Equation (B2), the commutator in
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three-element representation becomes as follows:

J00@) 5D )]
= oz Eb@ute) Do) (50— 040 ) duer)

¥ ((_ﬂiag - qA§0><x1>) qz;(xl)) @a@l)} By

t1=t

As the term includes qAZ(O) (x1) is zero following Eq.(B3), let us treat the term including the

derivative.

~(in ~ (im0
@), 5 ()]
t1=t

= —Jlihe’ =% lim 0}* |l (x)da(@) , U] (@1)dala?) —¢l<x1>%<xl>]t1:t

2 me? =3 -z

cq . —q
——zh02—2

2 mce

tim 91° (%@ = 1) (Vh(2)daa) + L1 a())

0% = o) (BL@)dalm) + Ol (@n)da(@)))

= _Yiper L
2 mc?

0w = 20)0; (D12 da(e1) + DL (21)u ()

+ (08 (@ = o0)) (G @)ale) + 9 (01) a2
= Dine Lo, (5 — o) (L @)ale) + L )de())
= —cqihczﬂz—cqz@ (53(93 - fl)&l@”)&a@”)) = —ihczﬂ:—;]zslﬁau <53(5E - xl)j(mo)o(z» (B5)
— —cqz’hc2ﬂ:—§28@- (63(36 — xl)lﬁl(xl)lﬁa(m))tl:t—ihczn;—fzgu’i (8u53(:c — 1)) GO0 (),

(B6)

t1=t

t1=t

t1=t

where the last two-way expressions Egs.(B5) and (B6) are in four-element representation
instead of three-element representation. Summarizing Egs.(B3) and (B6) result in Eq.(B2).
As the result, the present four-element linear susceptibility,Eq.(40) maintains the charge
conservation law ,Eq.(24).

For the proof for the gauge invariance, Eq.(25), of the linear susceptibility, suppose the

four-element divergence with respect to x;. Then, using Eq.(B2) with the replacement,
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x <> x1 and the relation, 5518,“ = —5518“1, one may obtain:

10 _ —C] N 1 ~(in
ot (1) = ne (et = cty) (3,076%(@ — 21)) jO"°(z) (BT)
_ ety [0 n () 56m0)
(et — ety) [J000 (), 0 ()|
= 0.

As shown above, the linear susceptibility Eq.(40) maintains gauge invariance Eq.(25).
Next, let us show that the charge conservation law is satisfied by the 2nd order nonlinear
single susceptibility, Eq.(41). Operating 9, = 8,00 + 6,01 + 6,0, + 6505 to Eq.(41) and
considering 8,79 #(x) = 0 (the charge conservation law for the current density operator in
the non-interacting system), the surviving terms are those the operator 0, operates on the
step function or delta function in front of the commutator, and operates on 59 9(x) in the

commutator.

8“ 2! XMHULQ (LU, Ty, LUQ) =

% n;—cqz {5(ct —ctq)f(ct — cty) 5 Oy ( T — 1T [j (tn0) 0 ,A(mg)z(:)sg)) (B8a)
+8(ct — cta)B(ct — ctr) 8,0, ( z — T [<m° 0y ,A<m°>1(x1)])(]38b)

+ (et — ct)d(cty — cta)dy 0% (w1 — ) [ (0)0 (), 50 (xl): } (BSc)

" (%)2 {a(ct — et )oet, — et) [ [§6700(), 567 ()] 5679 )] (Bsd)
+ (et — cta)0(cty — cty) HjU"O)O(x),j(mgg(@)} ) (a:l)] } . (BSe)

Applying Eq.(B2), the third term (B8c) vanishes, and the fourth and fifth terms (B8d) and
(B8e) cancel the first and second terms (B8a) and (B8b), respectively.

As a result, the second order nonlinear single susceptibility operator Eq.(41) maintains
the charge conservation law, Eq.(24).

To check the gauge invariance of the second order nonlinear single susceptibility operator,

let us operate 0" to Eq.(41).

oM 2K, (T, ) =

L_—q _ _ ~,LL w1 3 o A-(inO)O /\.(ino) 7
L bt —et)o(et —ctr) (84,070 —2)) [{70(2), 5" (w)] - (Ba)

—8(ct —cty)b(ct —cty) 6, 6 (x — x9) [}(ino)o(x)’}(mg) (361)} (B9b)

H2

+0(ct — cty)d(cty — ct3)8, O™ (53(931 — ) [j“”ow(z),j“"g) (e1)] ) }Bgc)
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+ (%)2 ((=5(ct — ct1)B(cty — cta) + O(ct — cty)5(ctr — cts))
[[305(2), 5679 (@1)] , 37) )] (B94)

= B(ct — cta)d(cty — cty) | [0 (2), 590 (@) |, D (@) } (Be)

Replacing the fifth term (B9e) using the next Jacobi identity:

|50 (), 560 (2)] 50 ()] (B10)
= — |1 @), Q@] Je0 e @)] = [ [ @), 0 (@)] 5 (@)

then, the first term in the right hand side of Eq.(B10) with Eq.(B2) offsets the term (B9c),
and the second term in the right hand side of Eq.(B10) offsets the second term in (B9d).
The first term in (B9d) offsets the first term, (B9a), considering the commutation relation
at the simultaneous time, d(ct — ct;) j'@"OW(x),j“"g’(xl)] and Eq.(B2)(remark the change
of upper or lower subscript). The second term (B9b) vanishes by means of Eq.(B2).

As a result, the second order nonlinear single susceptibility operator Eq.(41) maintains
the gauge invariance, Eq.(25).

With respect to the third order nonlinear single susceptibility, let us check the charge
conservation law. Operating 0, to Eq.(42),

6# 3! )2“#1#2;% (

1 —q 2
the? \ mc?

{9(@ — ct)d(ct — ct1)8(cts — ct3)8, 10 (w2 — 23)8", D) (53(:1: — 1) [j<i"0>0(x), j“"Og(xQ)D (Blla)

$7$17$27$3) =

+0(ct — ctg)S(ct — cta)3(cts — ctr)dpg 6 (x5 — 21)3" D) (53@; — 1) [5@”0) O(x),j“"og(xg)] )(Bnb)

+ 0(ct — ct1)d(ct — ct3)d(ctr — ct2)d, uy0° (11 — xg)g“#sau ((53(90 —x3) [ (n0) 0 (g, mo) D Fllc

1 \2
AR
(ihc2> mc?

{(5(ct — ct1)0(ct1 — ct2)f(cta — ctg)g“mau ((53(:10 — 1) H}(mo) O(x),j'(mgz ((Eg)} ,3“"33 (Ig)} (B11d)

+d(ct — ct1)0(ctr — ct3)0(cts — ctz)S“m

8@ — ) [[700@), j w5)] 70 (22)])  (B1Le)

+d(ct — cta)f(cta — ct3)0(cts — ctl)S“M(?#

(Bllg)

+8(ct — ct3)f(cts — ct1)0(cty — ctg)g“mau

(B11h)

6% — w2) [ [7070 (@), j00) ()| D (an) | ) (B1IE)
8w —a3) [ [0 (@), JU0 )| TR @)

+8(ct — cta)f(cta — ct1)0(cty — ctg,)g”l%@H ((53(90 — Z2) | _j’(mo)o(:v),f(mgz (:101) ,j(mgg (x3)

+d(ct — ct3)f(cts — ct2)0(cta — ctl)S“MS

8w — ) [[7600 (@), 100 (22)] 5D ()] ) (B11)
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+d(ct — ct1)d(ct1 — cta)B(cte —

+d(ct — cta)b(cta — ct3)d(cts —

+3(ct — ct3)B(cts — ct1)d(cty — cta)dpu, 1y 0> (21 — 22) Hj(mo)o(w)’j(mo) (:Eg)} 3¢

1 3
* (@)

{6(ct — ct1)0(cty — cta)f(cty — cts) Hp(mo)o(w%ﬁ(mﬁf (:vl)} §n0) (xz)} im0 (x3)}
+5(Ct — ctl)ﬁ(ctl — Ctg)@(ctg _ Ct2) [T _j(inO) ( )
—|—5(Ct — Ct2)9(ct2 — Ct3)9(0t3 — Ctl) Il _j’(inO) ( ) ](ml(t)z (I2>_

5(1'710) O(CL‘), j(mO) ($2)

+d(ct — cta)f(cta — ct1)0(ct1 — cts)

+d(ct — ct3)f(cts — ct1)0(ct1 — cta) _

0 (ct — ct3)(cts — ctz)0(cty — cty) -[-[-[3‘“"0”( ), 3D ws)] 5 (w2)]

Ct3)0puy iy 6° (1 — 2)

00(a),

J M1

39 (903)

o(ct — ct3)d(cts — cty)B(cty — ct2)3yy 8 (x5 — 21) | [FE00(2), 50

+5(Ct — ctl)ﬁ(ctl — Ct2)5(ct2 — Ct3)5#2 #353(I2 _ Ig) [ —j(ino) ( )

% (in0) (Il)_

j(i"O)O(:c),j(mé)) (z1)

+d(ct — cta)d(cta — ct3)f(cts — ctl)guz HS(S?’(:CQ —x3) [ _5(1'710) O(x),j’(mo)

0

0

in0
' uz

7‘](zn()) (.Ig)
7‘](zn())( 3)_

7j(mO) («Tl)

70 (z )

(2
(x

1 2(ino
)]

3)_ ) j(ln;?;

~(in0)

(Il) 2 J 0

Ctl)gus H153($3 _ :El) 5(1'710)0(1:)7](1110) (;62) 7](m(§))

% (in0) (I2)_

7 2

% (in0)

) J ,ul( 1):

, i(zngz (,Tg)_

0 2

, i(zngz (,Tg)_

(551):

~(in0) ($2)

©2)
z2)
)

" (Il)} }

J(m,?z (1’1)} }

(B11j)
(B11k)
(B111)
(B11m)
(Blln)

(Bllo)

(Bl1p)
(Bllq)
(Bllr)
(Bl1s)
(B11t)

(Bllu)

The term (Bllp) offsets the term (B11d), applying Eq.(B2) to the most inner commutator

n (Bllp).
(Blle)-(B11i), applying Eq.(B2).

In the same manner, the terms (B1llq)-(Bllu),respectively, offsets the terms

The terms (B11j)-(B11l) vanishes, applying Eq.(B2) to

the inner commutator at the simultaneous time. The term (B11m) offsets the term (Blla),

applying Eq.(B2) to the most inner commutator. In the same manner, the terms (B1lln)-

(B1lo), respectively, offsets (B11b)-(Bl1lc), using Eq.(B2).

As a result, the third order nonlinear single susceptibility operator Eq.(42) maintains the

charge conservation law, Eq.(24).

To check the gauge invariance of the third order nonlinear single susceptibility operator,

let us operate 0" to Eq.(42).

o 3'X Hip2ps (x’x17x27x3) =

1 —q 2
ihe? \ mc?

{9(ct — ct2)d(ct — ct1)d(cty — ct3) (5“#18“163(1 - x1)> Opiz 150> (T2 — 3) [j’(mo)o(x),3(in0())(x2)}(B12a)

+0(ct — ct3)d(ct — cta)d(cts — ctl)g“uz&o’(a@ — Z2) (Sus 51 0M183 (23 — x1)> [3(i"0) O(x),j’(mo&(x;g)}(BlQb)

+ 0(ct — ct1)d(ct — ct3)d(cty — cta)o*, 5% (x — x3) (SM 1 OM10% (21 — 22) []<m0>0
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NER
ihc¢? ) mc?
{(5(ct — ct1)0(ct1 — ct2)f(cta — ct3) (5%18“153(2@ - x1)> H}(mo) O(x),j’(mgz (:102)} ,3“"33 (:103)} (B12d)

£8(ct — ct1)B(cty — ct3)B(cts — ct2) (S#Ma#w(x —3:1)) Hj<m0> (x), 50 (xg,)} ,jm0) (u)} (B12e)

I s
—3(ct — cta)B(cts — cts)d(cts — ctr)5,, 6% (x — w5) Hj@”@ (), j0"0) (xg,)} 500 (xl)] (B12f)
+ (=0(ct — cta)d(cta — ct1)f(cty — cty) + 0(ct — cta)f(cta — ct1)d(ct1 — cts))
0,,0% @ = 22) [0 0@), 30 (@0)] J @) (B126)
+ (=8(ct — ct3)d(cts — et )B(cty — cty) + 8(ct — cts)B(cts — ct1)d(cty — ctz))
0,,0% (@ = 2) [ [1700(@), 30 ()] J @) (B12)
—d(ct — ct3)f(cts — cta)d(cta — ctl)g”#363(x —x3) Hj(mo)o(w)’j(mo) (:102)} j’(i"é)) (:101)} (B12i)

+0(ct — ct1)d(cty — ct2)B(cts — ct3)dy, g0 (53(:01 — 23) Hj’(mo)“(;v), 5(m0) (xl)} ,3(im0) (x3)D (B12j)
—0(ct — ct2)d(cty — ct3)d(cts — ct1)dy uy 0% (22 — 13) Hj“nw(x), 50 (u)} HCA (3:1)} (B12k)
H0(ct — cts)d(cts — cty)B(cty — cta)dyuy pn (0163 (s — 1)) Hj“now(x), 50 (xg,)} 7m0 (u)} (B121)
+ (=0(ct — ct1)0(ct1 — ct2)d(cty — cty) + 0(ct — ct1)d(cty — cta)d(cta — ct3))

Bz g0 (w2 — 3) [ [700 (@), D ()] F D (w2)] (B120m)
+0(ct — cta)dcts — cts)dets — ct) (Buy 08 (w3 — 1) ) [[700 1 (@), D ()] L5 (Ig)}(BlZﬂ)
+0(ct — cts)dcts — ctr)d(cts — ct2)8y, 0 (8 (@1 — wa) | [0 (), 90 (23)] 3V (1) | Y B120)

1 3
+ ()
{(=6(ct — ct1)f(ct1 — cta)B(cta — cts) + O(ct — ct1)d(ctr — ct2)b(cta — ct3))

[0 (@), 39 @] 3 )| 5070 ()| (B12p)
+ (=d(ct — ct1)0(ct1 — ct3)0(cts — cta) + O(ct — ct1)d(cty — ct3)f(cts — cta))

[0 @), 59 @) 3 ws)] 570 (22)] (B12q)
—0(ct — ct2)0(cts — ctg)d(cts — ctr) |[[F (@), j D (w2)] 300 (25| 3D (@) (B12r)
+ (—0(ct — ct2)d(cta — ct1)0(cty — ct3) + O(ct — cta)f(cta — ct1)d(cts — ct3))

([0 @), 507 w2)] 5 @) 307 ()| (B125)
+ (—6(ct — ct3)d(cts — ct1)0(cty — cta) + O(ct — ct3)0(cts — ct1)d(ct1 — cta))
(3005 @), 500 @) 5 )| 37 ()| (B12t)

—0(ct — ct)0(cty — ct2)d(ety — ctr) [[[76 (@), ) @s)] 70 (@2)] 3 ()| } - (B12u)
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In the following, we prove the next equation, which leads to the gauge invariance.

(B12p) + (B12d) +(B12j) +(B12s) +(B12r)+(B12n) = 0, (B13)
(B12q) + (B12e) +(B121) +(B12t) +(B12u)+(B120) = 0, (B14)
(B12m) + (B12a) +(B12k) = 0, (B15)
(B12i) + (B12c) +(B12h) = 0, (B16)
(B12f) + (B12b) +(B12g) = 0 (B17)

Eq.(B13): The first term of (B12p) offsets (B12d), using Eq.(B2). To the inner double commu-
tator in the second term of (B12p), the nest Jacobi identity is applied:

[0 @), 39 )] 3 )] 50 ()| (B13)

= = [[[7" @0, 3 @] 50 )] L 50 ()]

= [ a2y, 30 @) T )| 5 )]

Furthermore, the inner commutator (, assuming at the simultaneous time) in the first
term of Eq.(B18) , one may apply Eq.(B2). The part including this factor in the
second term of (B12p) offsets the term (B12j). In the second term of (B12p), the part
including the second term of Eq.(B18) offsets the first term of (B12s). Up to now,
(B12p)+(B12d)+(B12j)+ the first term of (B12s)= 0 has been shown.

Next, to the outer double commutator in the second term of (B12r), let us apply the
next Jacobi identity,

[ @), 0 @) 5 )| 58 () (B19)
[T~ (in ~ (in0 :(in ~(in
= - _[J( 0 (w3), 7' 0)(551)} : [J( Ok(x), 5 2)2(362)”

[0 (@), 0 )] T @) 5 )]

The commutator in the first term of Eq.(B19): [5(1"2)3 (z3), 7 (xl)] is the commu-

tator at the simultaneous time, therefore, we may use Eq.(B2). The part including
this factor in (B12r) offsets the term (B12n). In (B12r), the part including the second
term of Eq.(B19) offsets the second term of (B12s). Up to now, (B12r)+(B12n)+ the

second term of (B12s)= 0 is shown.

Together with the previous result, Eq.(B13) holds.
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Eq.(B14):

Eq.(B15):

Eq.(B16):

Eq.(B17):

This equation is Eq.(B13) with the replacement xs <> 3 and ps <> ug, therefore,
Eq.(B14) holds.

The first term of (B12m) offsets (B12a), using Eq.(B2).

To the double commutator in the second term of (B12m), the nest Jacobi identity is

applied:

[T~ (in ~(in0 1 ~@no ]
7O u (), 3 (@) | 5O ()

H}'<""8>(x1),3“"8>(:c2)} 75(m0)u(x)} _ H}(mg)(@),j(mom(@] 75(""8)@1)}

([~ (in ~(in0 1 ~@no ]
= |70 (@), 7D (@) |, 7 (a1)

(B20)

In the above, we use the inner commutator (at the simulatenesou time) in the first
term of the second hand side becomes zero, using Eq.(B2). The second term of (B12m)
includes the factor of Eq.(B20) and offsets (B12k).

As a result, Eq.(B15) holds.

To the double commutator in (B12i), we apply the next Jacobi identity:

[[7790(), 560 (2)] . 59 )]

= = [[J @), D @)] 0@ = [ ), 0 @) 5 ()]

(B21)

The inner commutator in the first term of Eq.(B21) is the commutator at the simul-
taneous time, therefore, we may use Eq.(B2). The part including this factor in (B12i)
offsets the term (B12c). In (B12i), the part including the second term of Eq.(B21)
offsets the second term of (B12h). The first term of (B12h) is zero, because the inner
commutator included in this term is commutator at the simultaneous time and leads

to zero, using Eq.(B2).

Therefore, Eq.(B16) holds.

This equation is Eq.(B16) with the replacement xs <> 3 and ps <> ug, therefore,
Eq.(B17) holds.

As the summery, Eqgs.(B13)-(B17) hold and the third order nonlinear single susceptibility
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Eq.(42) maintains the gauge invariance Eq.(25).
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Chapter 2
Virtual Photon Model by
Spatio-Temporal Vortex Dynamics

Hirofumi Sakuma

Abstract The issue on theoretical foundation of optical near field or dressed photon
(DP) as its quantum mechanical representation in the field of nanophotonics remains
unsettled. Experimental data accumulated so far seem to suggest that DP possesses
characteristics of off-shell virtual photons. On the basis of this observation and crit-
ical reviews of classical as well as quantum theory of light, we are now developing
anovel theory describing DP. A unique feature of the theory explained here is that it
takes an important role played by spacelike momentum to describe field interactions
into consideration and hence it provides an extended picture of conventional virtual
photon dynamics on spacetime. We show here that the new model is closely related
to so-called “scalar photon™ and longitudinal mode of free electromagnetic waves
that are eliminated as unphysical modes in a covariant quantization of electromag-
netic wave field. So, as an important preliminary step toward constructing a new
model of virtual photons, we first discuss that the above prevailing claim made by a
covariant quantization theory only reflects dynamical requirement on the micro quan-
tum world and overlooks the emergence of condensed classical modes which can
be understood in the framework of Ojima’s Micro-Macro Duality Scheme (MMDS)
providing a mathematically derived quantum-classical correspondence. As a matter
of fact, the existence of those eliminated “unphysical” modes are clearly reported in
the field of classical electromagnetic theory in addition to the fact that those modes
are directly related to Coulomb modes playing a significant role in electromagnetic
interactions. As a central theme of this article, a newly introduced Clebsch dual field
of electromagnetic wave field as an extension of conventional electromagnetic one
is shown to be a promising new model of DP as virtual photons. We also point out
an intriguing property that extended virtual photons with spacelike property carry
negative scalar curvature similar to enigmatic dark energy discussed in cosmology.
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Chapter 3

Quantum Probability for Dressed
Photons: The Arcsine Law in
Nanophotonics

Hayato Saigo

Abstract In the present paper we propose a new framework for the investigation of
dressed photon from the viewpoint of quantum probability. As a result, we show that
a probability measure called the Arcsine law plays crucial roles in nanophotonics.
For instance, a concrete formula for the probability density of dressed photon in a
fiber probe and a new prediction in photon breeding phenomena are given in terms
of the Arcsine law.

3.1 Introduction

Dressed Photon (DP) is an essential concept for the investigation of many phenomena
which cannot be explained in conventional optics, especially of the phenomena aris-
ing in the interaction between light and nano-scale matter [1]. This concept provides
the fundamental reflections on physics and engineering and the interesting examples
motivating the reformulation of the concept such as the composite systems or the
micro-macro relationships.

In this paper we investigate some mathematical/physical aspects of the DP in
terms of Quantum Probability (QP), the generalization of probability theory which
includes whole quantum (and classical) physics as a subtheory.

As a result, it is shown that an important probability distribution called the Arc-
sine law plays fundamental roles in the phenomena of DP, and a new mathemati-
cal/physical interpretation is given for the universal phenomenon that DP occurs at
the extreme points of a material system such as the tip of a fiber probe.

In the Sect.3.2 we define the notion of DP from the author’s viewpoint which
clarifies why DP is related to the fundamental notions of physics such as quantum-
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Chapter 4
Control over Off-Shell QFT via
Induction and Imprimitivity

Izumi Ojima

Abstract In the framework of Micro-Macro duality with quadrality scheme, the
mutual relations between Micro and Macro are considered in a systematic way. On
this basis, many interesting aspects of symmetry breaking are discussed, according
to which the classifying space of sectors is shown to have the structure of symmetric
spaces characterized by the condition similar to Maxwell and Einstein equations.
Applying these results to the attempts for constructing a theory of dressed photons,
we are naturally led to the idea of the relevance of automorphic forms which have
close connections with number theory.

4.1 Micro-Macro Duality 4+ Quadrality Scheme

When we integrate a mathematical approach to the dynamical aspects of the system
in question, together with the geometric description of the relevant structure in terms
of invariants which are generated by the dynamical processes and which implement
the classification of the processes and structures, then we arrive at the category-
theoretical framework of “Micro—Macro duality 4+ quadrality scheme” ([1]; “Quan-
tum Fields and Micro-Macro Duality [2], a book by Ojima, 2013 in Japanese and
also see [3]) by incorporating categorically the natural duality between the dynamical
processes and the classifying spaces.

By analyzing closely in this framework the dynamical processes and the classify-
ing scheme based on geometric invariants generated by the former processes, we can
understand that both of the invisible Micro doman corresponding to the dynamical
processes and of the visible Macro structure to the classifying structure in terms
of geometric invariants constitute the duality structure, to be called “Micro-Macro
duality” [4). According to such general feature, the description in terms of momenta
p corresponds to the inivisible Micro domain and the familiar concept of “spacetime
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Chapter 5
An Approach from Measurement Theory
to Dressed Photon

Kazuya Okamura

Abstract In this review, we discuss quantum measurement theory to develop that
for dressed photons. Algebraic quantum theory is based on the theory of operator
algebras, especially, C*-algebras. Our formulation of quantum measurement theory
stands on von Neumann algebras, a special class of C*-algebra, and treats processes
of measurements both in the Schrodinger picture and in the Heisenberg picture.

5.1 Introduction

In this review, we discuss quantum measurement theory in algebraic quantum the-
ory to develop that for dressed photons. Algebraic quantum theory is based on the
theory of operator algebras, especially, C*-algebras. The advantage of C*-algebraic
quantum theory is that it can explicitly describe macroscopic classical levels of quan-
tum systems. A sector, a quasi-equivalence class of a factor state, is a macroscopic
unit of quantum system. And we can describe the statistical aspect of sectors in the
measure-theoretical probability theory. In terms of sectors, we axiomatically formu-
late algebraic quantum theory and discuss symmetry breaking.

Our formulation of quantum measurement theory stands on von Neumann al-
gebras, a special class of C*-algebra, and is applicable to local measurements in
algebraic quantum field theory. In the Schrédinger picture, processes of measure-
ments are described by the notion of completely positive instrument defined on von
Neumann algebras. On the other hand, we can consider quantum mechanical mod-
elings of measuring appratuses, called measuring processes. It is shown that there
exists a one-to-one correspondence between completely positive instruments with
“the normal extension property” and “statistical equivalence classes” of measuring
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Chapter 6
Response Theory Supporting Dressed
Photons

Itsuki Banno

Abstract For a theoretical description of the dressed photon (DP) introduced in
Chap. 1, it is essential to develop a novel method different from those applied to
conventional optics. The difficulties lie in the facts that the familiar concepts such
as the electric field, electric permittivity, and polarization become irrational in near-
field optics (NFO), and that NFO is inevitably related to the many-electron problem.
Starting from the redefinition the DP in a general manner, this chapter is devoted to
explain above mentioned difficulties and develops the linear response theory applica-
ble to the optical near field and the DP. The derived linear single susceptibility relates
the scalar and vector potentials (as the cause) to the induced charge and current den-
sities (as the result), guarantees the gauge invariance and the charge conservation
law, and is soundly applicable to the many-electron system in NFO as the replace-
ment of ordinary two susceptibilities, namely, the electric permittivity and magnetic
permeability that relate the electric and magnetic fields (as the cause) to the polar-
ization and magnetization (as the result), respectively. The present formulation will
be extensible to the nonlinear single susceptibility, which is essential for a future
challenge to describe the DP.

6.1 Introduction

A series of experiments in near-field optics (NFO) utilizing non-metallic materials

was performed under non-resonant conditions and/or forbidden-transition condi-
tions, and showed various phenomena which have not been observed in conventional
optics. Such the NF optical phenomena are:

I. Banno (X))
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University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
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An approach from measurement theory to dressed photon
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BEIHEMROENMEEIIRT A2 LIk - T, ERGEYBEBOMAEMEHIZEVELS FL A
NEFDETY VTP KD FIIZIT R B AREMEIZ D W T AREE TIXERT 5.

B R TOHIEIZDWT Heisenberg LR DEHEI 2 Pl A DT THIE IZH R DOIREZELT )
BRELEONTE 2, vy MRBMEOHI T, AROKEOEZZITHEMFERT y #HIZ X D HHER
ThdhTOMNELEBERNIZLTEIEVHoNTWVWS, MRInE TR FIIEHERPIR L
UTHEL TEDI, ZOHID & 5 ITHIERTIFMNZ 28 HE R & HER GUERED I 7 1)
ZAROKHMAEFH I EHERDOYHMEDZILE A —X —IZHWSGETH S [2,3]. BTFHD
I PRER C O A IR 2 RIS 3B 1 B R FTE AR G 20 R & & O Ak & -l E B ER D
EREEIRL7ZEDTH S [4],

HEGHT - RUVAMETERNRLE UEHIEIZZOEHEDH D Hh s, RICL->TIHERAFTD
TSI - 72 IE 72 TREAF2 T, HIEREE L HHERIPEHEL 2FHE EZ D 2 DKL
AJREZRRIL T ORIE 2 LD Fo 22 1T N7 & 7\, Zloefrarsed v (e s %2 EH T & Ak
W, REETIE VA METORKTREI NS X1 TOHIED— 2 e b 2 R & 75
DPELAIZBENTIT S, FATA Y b (local net) DHERIZH & DWW TRZEFHIK DY HLE D E £217
N, A—=R—IZH5 L5 2WANINE TCOREHGRTORN L IFRRDDVARENT, HIEL
TRWRIE & JIE 3 2RI D LAY~ 7 BT W BEZR AR & U 2R 1T U7 5 78\, [AIIFIZ, Heisenberg
BT OREHER (5] 22F I Uiz biing,

HEE 2 O H AR EATHRIL S BURE No. 26247016, No. 16K17641, (#£) R L A s Y75
72 6 TR K M FIRER E SR D X R EZ T TV E T,

SE Xk
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RUZARMETIETF ) A= MU EOHBTE T PE T - EAN LTS U THIkZ%R 7T
HY, HHZEMZEHRT 2L IAREMIZRR IR FBEVERT. 22 OWEMEMEEHWT
WEEBTERDP o T2 T N ZADEHITER I N T W5 [8]. Z OMEE O BEE AT % #F 55
THHIIKYTHED, TOLHIZEFLIN-ERSG L T/ FHEOKEEFOETE L OME/ER- %
T AEEMABETH S [1, 2] AT E Tb S N2 EBRG IX R O FIRRE T O%EE
@%c%zéb=%_Liﬁ@ﬁmgwﬁ%&ﬁ%%O%wi%m%%iétﬁhé#ﬁ@@%ﬁ

BEERT HBEDBN, BARNETIVEBEL, T O %2175 F L UfT LU TERAZRABINE R
%%Ek&58467]itPVXF%%®ﬁT%§%ﬁW?$iﬁ%fE%%@ﬁﬁwﬁ%#
5Z DT RHENT 20BN S, I 70 - w70 BOHEDBUE AL 72 5 [6]. A Tl BRI
DEFAZD DL 2READOEE PR, T I NORETEEVWHIMEZ YD L S ICELHL Tﬁ%f»
EETT 5. BHNYE L BREGCHENZ TV WEMO R VA NEF%2 0 U FEMERIX 5]
X0, BNEBTEZONEZEANRT Yy VDOEEZ L TWEENRINT WS, AF#HT iﬁfﬁﬁ
FRBOBED S FUA MNT-OEMHEEROBIZOWTHERL, [5] £ DBEIZDWT, 995
HEHmET 5.

I
ARBFZENE () R LR ME TSR AOIMREZT TV £ T,

SE 3k
(1] FrHbelle, 7 4y 27 EM &7 - N (HAFEGwAL), 2000.
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R L A b J&¥ (Dressed Photon, DP) [4] 1Z. F/ A7 — )V iZBIT 5N WEOMEERIZE T
TR INZZ L OBREHRT 572 DICAA RGBS TH S, ZOMIE, WHTYB LIV
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K] [5] DF A D EERIEE &R 5),

AFHETIE, FUA METOBEEYPL AT 2, & 725 (Quantum Probability)[1, 3] £\
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Fex DRI N —7 T TN E TIOGRRA#E L LT, Bbiighs& 1 N> F(ZnO-QD) & A
tREGHT LV ) a— U BIEEORIE FIE A ML L, fifhR Si KRR O = )L ¥ — 25 #ash 3
] 4RI & A EGIC A S D R O RS & SE 24T o T & 72 [1,2), ZAUE ZnO-QD 726 a3k

DT ~KRUVAMNETEN LTV —BEBINE 25 2 & TERRIOROBEELEBR N TS
HOT, LA D A A~DOERIZI N T 90%LL EO BT & m#ElK LT\ 5, Al [FFEE

S S WREHM B ORI Z L 0 KT 2~ BB BB S Al 7e EI R AT

BT T AT v MBI ChH=F L UFE Y = VILEAIREVARIIED~L v MMZ ZnO-QD &
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FEEROT=HD EVA XLy MIZHE Y —FR) UV F 712 710 iz, XLy NER AL
PRWVEBEOERL Y ¥ 2 & LT, £ b o CHNGEA L Emme b kB KA FIETRA L.
FOGERND 5T ZnO-QD ORISR ZER L7z, Z ORIBEAREAEIKIZ EVA XL v b & A3 (Exciton ff,
Coumarin 545)#EA LEE 352 & T, M L7 EVA I ZnO-QD L @EEEZNAIEL Z LIk
B, FRHEBOEDETETOREOLENDL STy FHIERLT,
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