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Abstract: As an important follow-up report on the latest study of the first author (H.S.) on an off-shell
quantum field causing a dressed photon and dark energy, we further discuss a couple of intriguing
subjects based on the new notion of simultaneous conformal symmetry breaking. One is the dressed
photon constant. If we use it, in addition to h̄ and c, as the third component of natural units, it is
defined as the geometric mean of the smallest and the largest lengths: Planck length and that relating
to the cosmological constant. Interestingly, this length (≈50 nanometers) seems to give a rough
measure of the Heisenberg cut for electromagnetic phenomena. The other is a new perspective on
cosmology that combines two original notions, i.e., twin universes and conformal cyclic cosmology,
proposed, respectively, by Petit and Penrose, into one novel picture where universes expand self-
similarly. We show the possibility that twin universes having a dual structure of (matter with (dark
energy and matter)) vs. corresponding anti-entities, separated by an event horizon embedded in
the geometric structure of de Sitter space, undergo endless cyclic processes of birth and death, as in
the case of the pair creation and annihilation of elementary particles through the intervention of a
conformal light field.

Keywords: dressed photon; dressed photon constant; natural units; Heisenberg cut; de Sitter space;
dark energy; dark matter; cosmological constant; twin universes; conformal cyclic cosmology

1. Introduction

Application studies of quantum theory in nanosciences have continued to accomplish
a variety of spectacular modern technological achievements. The technology involving
the dressed photon (DP) phenomena is one such achievement that makes the impossible
possible. While a reliable theory has not yet been established to explain the characteristic
behaviors of DPs, a comprehensive review of DP studies, including the impossibility of
understanding DP phenomena within the conventional framework of Maxwell’s equation,
was given by Ohtsu [1], together with a series of associated intriguing technologies and
the status of theoretical attempts to understand DPs up to 2017. The research on the DP
phenomena is now being pursued more actively than ever before both experimentally
and theoretically. The most important point on the DP, clarified through decades-long
investigations, is that the DP field is not a simple variant of the light field such as evanes-
cent light, which is essentially a free mode, but involves largely transmuted and locally
condensed (within an area smaller than several tens of nanometers) electromagnetic field
energy achieved through light–matter field interactions involving point-like singularities,
which seem to be a key factor for DP generation. The peculiarity of the DP field compared
with the free light field is concisely summarized in Section 1 of the latest paper on DPs by
Sakuma et al. [2] (S3O hereafter), where a new theory is proposed, focusing on the aspects
of quantum field interactions thus far neglected.

The real reason for the unsuccessful attempts at a full-fledged theory of DPs seems to
be related to the fact that a DP is not a free mode, but is the outcome of light–matter field
interactions, the complexity of which makes constructing a simple mathematical model
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difficult. In fact, contrary to the above-mentioned remarkable technological successes
of quantum theory, the current stage of development of quantum field theory (QFT) is
far from a firmly established one, such as the theory of Newtonian mechanics. From
this viewpoint, a major stumbling block might be the lack of mathematical support for
interacting quantum field models satisfying the covariance under the Poincaré group P in
4-dimensional Minkowski spacetime (defined as the crossed product P := R4 oL of the
Lorentz group L acting on the 4-dimensional Minkowski spacetime R4). While the main
subject here is the DP system, to be described as a subsystem of relativistic 4-dimensional
QFT, a survey of the basic structure of the 4-dimensional QFT itself would be useful for our
purpose of discussing the various aspects of the DP system.

First, the physical interpretations of QFT described by the interacting Heisenberg fields
ϕH are realized by the notion of on-shell particles contained in ϕH with the 4-mometum pµ

given by Equation (1):

p2 := ηµν pµ pν := pν pν = (m0c)2 ≥ 0, µ, ν = 0, 1, 2, 3, (1)

where we adopt the sign convention (+1,−1,−1,−1) for the Minkowski metric η given by

ηµν =




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


.

The physical meaning of the asymptotic fields φas (as = in or out) can be seen in their
role in a scattering process formed by the in-fields φin

1 (p1), · · ·, φin
m (pm) with momenta

p1, · · ·, pm converging from the remote past to the scattering center and by the out-fields
φout

1 (q1), · · ·, φout
m (qn) with momenta q1, · · ·, qn diverging from the scattering center to

the remote future. In contrast with the interacting Heisenberg field ϕH , which causes and
controls the above scattering process behind the scenes, the asymptotic field φas carrying
the above momentum spectrum as an observable quantity can be easily realized as a free
field obtained by the so-called second quantization, as shown below. Owing to its linearity,
the asymptotic field φas is governed by the well-known Klein–Gordon (KG) Equation (2).

In the simplest case of a scalar field φas, the first quantization pµ → ih̄∂µ applied to (1)
realizes the KG equation:

[h̄2∂ν∂ν + (m0c)2]φas = 0, (2)

where the operand φas determined by the second quantization becomes a quantum field
φas describing a multi-particle system given by

φas(x0, x̃) =
∫ d3k̃√

(2π)32Ek
[a(k̃) exp (−ikνxν) + a†(k̃) exp (ikνxν)]. (3)

Here, (a†(k̃), a(l̃)) and (x̃ and k̃), respectively, denote a pair of creation-annihilation oper-
ators and of 3-vectors consisting of spatial components of xµ and kν, with Ek defined by

Ek :=
√
(k̃)2 + (m0)2. A familiar Fock space is constructed on the basis of (3) and of the

vacuum state vector |0〉 satisfying a|0〉 = 0, according to which a positive energy spectrum
is selected in the state vector space. While the field φas thus constructed embodies the
wave–particle duality of a quantum system, it still lives in the realm of linearity due to the
linear KG Equation (2). With the restriction due to this linearity (or the on-shell property (1))
overlooked, however, essential features of Fock spaces such as the positive energy spectra
in the state vector space generated by repeated applications of the creation operators on
the Fock vacuum |0〉 (under the cyclicity assumption) are misinterpreted as the univer-
sal structure to be found in interacting multiparticle systems. Accordingly, |0〉 becomes
as mysterious as the creation of everything from emptiness. We return to this point in
Section 4 on cosmology.
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The mutual relations among the Poincaré group P , Heisenberg field ϕH , asymptotic
field φas, and momentum spectrum (pµ) can be clearly visualized by means of the quadral-
ity scheme to describe the duality relation between Micro and Macro (Micro-Macro duality
based on the quadrality scheme [3]):

(Macro System) (pµ) : Spectrum (Spacetime)
Spec

↗
States : (φas) ←− t−→±∞←− ←− (ϕH) : Algebra

y
P

Dynamics (MicroSystem)

Remark 1. In the specific example of scattering process with asymptotic completeness, the original
quadrality scheme of micro–macro duality can be seen in the above relations among the dynamics P
acting on the algebras of interacting Heisenberg fields ϕH and of their asymptotic fields φas and
the spectrum of energy-momentum pµ. It gives a unified categorical description of the system of
interacting quantum fields in terms of quantum and classical systems, both of which are characterized
dynamically by their non-commutative and commutative algebras. As our new ideas on quantum
field theory of the dressed photons depends heavily on this quadrality scheme, it will be convenient
to explain here its minimal essential points to those who are familiar only with quantum mechanics
with finite degrees of freedom.
The scheme is a theoretical framework consisting of a couple of different dualities that are interweaved
to describe the theoretically phenomena under consideration: among the four basic ingredients in the
scheme, Dynamics and the Algebra X of physical quantities belong to the micro side of the quantum
system, while the remaining two elements—States (and their representations) and Spectrum—
belong to the macro side. To visualize the invisible quantum micro system, we need to exert certain
action E : A → X on the microscopic quantum system X from the macro side A. The response of
the acted micro side to the acting macro side is to be given by F : A ← X , according to which we
have an adjoint pair of functorsA F(x) � E(a) X ; (x ∈ X and a ∈ A). In this way, we see that the
basic structure of the quantum theory is mathematically formulated by the so-called “adjunction” in
category theory, which can be understood as the precise mathematical form of “duality”A ' X (one
of the weaker forms of equivalence), where X and A, respectively, denote unknown mathematical
object belonging to micro system and known object (as the familiar vocabulary) in the classical
macro system and symbol ' denotes natural equivalence.
As we see in the above diagram, the abscissa axis represents the duality between the algebra X of
quantum variables and its states with Gel’fand–Naimark–Segal (GNS) representations realized in a
Hilbert space. Central problematic issues we have in considering quantum systems with infinite
degrees of freedom would be those on unitary nonequivalence and the uniqueness of irreducible
decomposition, which are usually regarded as a pathological aspect of systems with infinite degrees
of freedom. However, omitting the details of extensive researches so far done on the generalized
sector problem, we can briefly summarize the main conclusions of them as follows. A system with
infinite degrees of freedom can be represented with multiple sectors where a sector is defined by
a factor representation with trivial center containing only scalar multiples of the identity, which
generalizes the notion of irreducible representations with trivial commutants. Here, disjointness
means the absence of intertwiners, as the refined notion of unitary nonequivalence adapted to the
situations with infinite degrees of freedom. By this kind of generalization, we also have the change in
the classification of representation, that is to say, an irreducible representation is to be replaced by a
factorial representation which has a self-evident center playing the role of a commutative (classical)
order parameter. Thus, we show that macroscopic order parameters emerge naturally from
the disjoint representations appearing in the micro systems and the spectrum of those
order parameters gives the classification space for describing a variety of configurations
the micro system would take. The duality relation illustrated in the ordinate axis, that is,
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[Dyn � Spec] expresses the duality between invariability and variability of coupled micro
and macro systems.

The asymptotic fields φas given by (3) are placed in this scheme in duality relation
with the interacting Heisenberg fields ϕH , where φas itself consist only of linear free modes
without anything to do with nonlinear field interactions having the off-shell property.
Because the clear-cut mathematical criterion to distinguish nonlinear field interactions
from the free time evolution of noninteracting modes, known as the Greenberg–Robinson
theorem [4,5], states that if the Fourier transform ϕ(p) of a given quantum field φas(x) does not
contain an off-shell spacelike momentum pµ with pν pν < 0 (cf. Equation (1)), then φas(x) is a
generalized free field. A caveat to be made here is that a spacelike momentum field does
not necessarily mean the presence of a tachyonic field representing particle-like localized
energy field moving with superluminous velocity, which violates the Einstein causality.
This localized field is known to be unstable such that the existing spacelike momentum
fields take naturally simple wavy forms. Another crucial piece of knowledge necessary
to understand the enigmatic DP phenomena is the important property of quantum fields
with infinite degrees of freedom, referred to in the above remark. As is well known, we
have only one sector in the familiar case of quantum mechanical systems with finite
degrees of freedom which are governed by unitary time evolution (the Stone–von Neumann
theorem [6]). In sharp contrast to this situation, quantum fields with infinite degrees
of freedom have multiple sectors [3,7], which are mutually disjoint (i.e., separated by
the absence of intertwiners), stronger than unitary inequivalence. Regarding the unitary
equivalence, Haag’s theorem [8] states that any quantum field satisfying Poincaré covariance
is a free field if it is connected to a free field by a unitary transformation. According to this
no-go theorem, it is meaningless to consider that an interacting Heisenberg field can be
realized through a unitary transformation of a free field by means of the well-known Dyson
S-matrix involving the interaction term. In this way, the essential part of our common
knowledge cultivated in quantum mechanical systems with finite degrees of freedom is
invalidated in relativistic QFT.

The notions of spacelike momentum field and the existence of multiple sectors must
be quite foreign for many who are unfamiliar with quantum systems with infinite degrees
of freedom, so that it is worthwhile to give a simple heuristic example. Let us consider a
simple wave propagation, ψ = exp i(k0x0 − k1x1), in a certain background field. One may
regard it as a wave, say, in the atmosphere. When the wave exists in a uniform background,
it propagates such that it satisfies (∂ν∂ν + k2)ψ = 0, with k2 := (k0)

2 − (k1)
2, which may

be compared to a “unitary” time evolution of a free mode in the timelike sector. If the
background field becomes nonuniform but its degree of nonuniformity is rather smooth,
then though its way of propagation is deformed to some extent, we can describe the
deformed propagation pattern by employing perturbative methods, and the solution still
remains in the timelike sector mentioned above. As an extreme case of severe interactions
with the environmental field for which the perturbative method is break down, we can
consider a frontal instability of the atmosphere in which the front is defined as a line of
discontinuity of the temperature and velocity fields. A wavelike perturbation with small
amplitude put into this frontal zone, due to hydrodynamic shear instability, can no longer
keep its wavy form, and its amplitude starts to either (i) grow or to (ii) damp exponentially
in a region that is narrow in the traverse direction. In view of such situations that QFT is
basically a theory involving complex numbers and that the frequency and wave number
of a given wavelike field represent the energy and momentum, the abrupt change in the
energy and momentum brought about by a certain kind of discontinuity of the field can
be represented in the simplest crude model by a discrete jump of (k0, k1) into (±il0,−il1)
with l2 := (l0)2 − (l1)2 > 0. Note that with this abrupt change, (∂ν∂ν + k2)ψ = 0 becomes
(∂ν∂ν − l2)ψ = 0, namely, the wave dynamics shifts abruptly from a timelike sector to a
spacelike one with the properties exp(∓l0x0) and exp(−l1x1) (valid in the domain x1 ≥ 0),
respectively, corresponding to the above-mentioned properties of (i) and (ii). Needless
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to say, this example, due to the atmospheric dynamics, could be transferred to situations
involving interactions among elementary particles, where a “severe interaction” would
evoke these changes on the interacting Heisenberg fields to which on-shell field theory
cannot be applied. We believe that this simple toy model gives an intuitive explanation of
the essential features of severe field interactions involving a certain kind of discontinuity
and why spacelike momentum modes are necessary to describe these field interactions. We
will further discuss this problem in Section 2.2 on DP model.

Now, going back to the general argument on QFT, notice that the above two theo-
rems in axiomatic QFT for relativistic quantum fields, especially the first one, justify our
investigation into the existence of a spacelike momentum domain, in the sense of a different
sector, with which the conventional Maxwell’s equation is to be augmented for a complete
description of electromagnetic field interactions. A helpful hint regarding an appropriate
form of the spacelike momentum can be found in the longitudinal Coulomb mode or the
virtual photon, which behaves as a carrier of electromagnetic force. In their series of papers,
Sakuma et al. (and the latest S3O [9–12]) derived an extended field covering the spacelike
momentum domain by applying a mathematical technique called Clebsch parameterization
to electromagnetic 4-vector potential Aµ. The extension of the field was accomplished in
two steps: (I) semi-spacelike and (II) spacelike extensions. To avoid confusion, here we
replace the common notation Aµ for a 4-vector potential with Uµ. In step (I), Uµ satisfies

[∂ν∂ν − (κ0)
2]Uµ = 0, UνUν = 0, (4)

where κ0 is an important constant, to be identified as the DP constant. At first glance,
one may consider this to be the wrong equation, as a null (massless) condition UνUν = 0
seems to be incompatible with the first equation in (4). As shown in the next section,
however, it is indeed correct. The reason why it looks bizarre is because it corresponds
to a longitudinally propagating electromagnetic wave of which the quantum version is
eliminated as unphysical in the conventional interpretation. We believe that this bizarre
mode, massless in the sense of UνUν = 0, corresponds qualitatively to an invisible virtual
photon, i.e., a U(1) gauge boson, and in step (II), this field is extended further to the case of
a genuine spacelike field satisfying UνUν < 0. As we will touch upon in Section 2.2, the
formulation of steps (I) and (II) is generalized to cover the case of a curved spacetime. As
the first equation in (4) can be considered a dual form of the timelike Proca equation, i.e.,
[∂ν∂ν + (m0)

2]Aµ = 0, we call it the Clebsch dual (CD) field and denote its skew-symmetric
field strength by Sµν := ∂µUν − ∂νUµ.

As the source-free Maxwell’s equation is conformally invariant, the derivation of
an augmented Maxwell field can be viewed mathematically as a conformal extension of
the electromagnetic field Fµν. From this viewpoint, note that the derivation of the CD
field is conceptually similar to the notion of a twistor introduced by Penrose [13], and
in this sense, the essence of our new proposal on cosmology has a closer connection to
the conformal cyclic cosmology (CCC) proposed by Penrose [14] than the antipodal twin
universe model of Petit [15]. To see this, let us consider the rotation group SO(3) acting on
three-dimensional vectors. For SO(3), the universal covering group SU(2) exists, which is
locally isomorphic to SO(3) and in relation to which a spinor is defined as its irreducible
representation. Extending this context to the Lorentz group SO(1, 3) in four-dimensional
spacetime, SL(2, C) arises as the universal covering group corresponding to SU(2). If we
further extend SO(1, 3) to a four-dimensional conformal group, then SO(1, 3) and SL(2, C)
are extended, respectively, to SO(2, 4) and SU(2, 2), and Penrose’s twistor appears as an
element of the complex four-dimensional space on which SU(2, 2) acts. As a parallel
argument, we can consider the case of a conformal extension of the electromagnetic field
Fµν that acts on the spinor as a U(1) gauge field. CD field Sµν, introduced as the spacelike
extension of Fµν, is thus also regarded as a conformal extension of Fµν. As has been shown
in S3O, we believe that this fact explains why the CD field plays an important role in the
dark energy dynamics of the self-similarly (conformally) expanding universe described as
a de Sitter space, in sharp contrast to the simple-minded intuition that the mutual relations
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between the DP and cosmological phenomena are irrelevant owing to their extremely large
scale difference.

This paper is organized as follows. To discuss the theme addressed in the title, we
first need prior knowledge on the CD field, which is a very new concept, and on several
important conclusions on cosmology reported in S3O. We reserve Sections 2 and 3 for
the purpose of recapitulating the minimal required knowledge in a simple way. Then, in
Section 4, we discuss the main topics of this paper, namely, the dressed photon constant
and a perspective on the possible relation between our novel cosmology and the CCC.

2. Augmented Maxwell’s Theory
2.1. Clebsch Dual Field

As mentioned above, the CD field can be regarded as a field of longitudinal elec-
tromagnetic waves. To understand this, we first note that a serious misunderstanding
regarding the longitudinally propagating wave modes has persisted. In the physical science
communities, this misunderstanding has been prevailing and left untouched, but it cannot
be overlooked in the present context. As a matter of fact, one frequently encounters this
statement in standard textbooks on electromagnetism, which asserts that electromagnetic
waves are not longitudinal but transversal. This concept seems, however, to be a super-
fluous reaction to the assertion in “advanced” quantum electrodynamics (QED), where
longitudinal modes are eliminated as unphysical. In the classical theory of electromag-
netism, however, the longitudinally propagating modes have been proved unmistakably
to exist in a light beam with finite width, both theoretically in [16] and experimentally in [17].
In these papers, the existence of longitudinal modes is shown without using the electro-
magnetic 4-vector potential Aµ. Here, the significance of introducing the CD field can be
seen in the following two aspects:

(i) in the above classical theory, the longitudinally propagating electric field can be
reinterpreted as the null current vector ∂µφ (φ := ∂ν Aν), and

(ii) through a process similar to the analytic continuation in complex analysis, the electro-
magnetic field Aµ is extended to a CD field Uµ. Via the Clebsch parameterization of
Uµ, Aµ is extended to the semi-spacelike momentum domain, which is regarded as the
classical version of the U(1) gauge boson as the mediator of the electromagnetic force.
Thus, we can obtain a consistent picture of the classical electromagnetic longitudinal
modes: the non-virtual one reported in [16,17] and the “virtual” one of the CD field.

To confirm what is stated above, let us consider Maxwell’s Equation (5) and the
associated energy-momentum tensor (7), together with its divergence (8):

∂νFµν = ∂ν(∂µ Aν − ∂ν Aµ) = [−∂ν∂ν Aµ + ∂µ(∂
ν Aν)] = jµ, (5)

Aµ = αµ + ∂µχ, (∂ναν = 0, φ := ∂ν Aν = ∂ν∂νχ). (6)

T ν
µ = −FµσFνσ +

1
4

η ν
µ Fστ Fστ , (Fστ Fστ = 0 for free wave modes), (7)

∂νT ν
µ = ∂ν(−FµσFνσ) = Fµν∂σFνσ = Fµν jν. (8)

If the Lorentz gauge condition ∂ν Aν = 0 is imposed, additionally or formally, to the above
Maxwell’s equation, then Equation (5) reduces to ∂ν∂ν Aµ = 0, according to which the free
Maxwell’s equation can be identified in the sense of jµ = 0. Apart from this conventional
method, however, another possibility to find the free equation begins with

∂ν∂ν Aµ = 0, (9)

without assuming ∂ν Aν = 0. In this case, (5) tells us that we have a nontrivial (∂µφ 6= 0)
balance equation

∂νFµν = ∂µφ, → ∂µ∂µφ = ∂µ∂νFµν = 0. (10)

The first equation in (10) can be justified in two steps: First, from (5) and (8), we see that
the conservation law of ∂νT ν

µ = 0 is satisfied when jν = 0 in the usual free case (8). In the
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case of (10), however, we use the expression ∂νT ν
µ = Fµν∂σFνσ in (8) and ∂νFµν = ∂µ∂ν Aν

in (5), which leads to
∂νT ν

µ = Fµν∂νφ = 0, (11)

if Fµν ⊥ ∂νφ with ∂µ∂µφ = 0. This expression indicates that the longitudinally propagating
vector ∂νφ is physical in the sense that it satisfies the energy-momentum conservation.

In the second step of the physical justification of (10), we consider (9) in terms of αµ

and χ given in (6), which becomes

∂ν∂να
(h)
µ = 0, ∂ν∂να

(i)
µ + ∂ν∂ν(∂µχ) = 0, (12)

with homogeneous and inhomogeneous solutions, i.e., α
(h)
µ and α

(i)
µ , respectively, for a

given χ satisfying the second equation in (10). α
(h)
µ obviously represents a transverse mode,

and the second equation gives a balance between the rotational and irrotational modes. The
existence of this balance is well documented in the hydrodynamic literature explaining the
mathematical description of the irrotational motion of a two-dimensional incompressible
fluid. Due to the irrotationality of the motion, the velocity vector (v1, v2) is expressed in
terms of the gradient of the vector potential φ̂, namely, (v1 = ∂1φ̂, v2 = ∂2φ̂); on the other
hand, the incompressibility of the fluid makes its motion nondivergent such that (v1, v2)
is alternatively expressed as (v1 = −∂2ψ̂, v2 = ∂1ψ̂), where ψ̂ denotes a stream function.
Equating these two, we obtain ∂1φ̂ = −∂2ψ̂, ∂2φ̂ = ∂1ψ̂, showing that φ̂ and ψ̂ satisfy the
Cauchy–Riemann relation in complex analysis. This heuristic example serves as a helpful
reference in proving that a null vector current ∂µφ propagating along the x1axis perpendicular
to Fµνcan be reinterpreted as the current of the longitudinal (x1-directed) electric field, of which
a detailed explanation is given in [10]. As referred to at the beginning of this subsection,
the existence of this longitudinally propagating electric field was actually reported in
[16,17]. Thus, we can say that the vector field ∂µφ is the physical mode that represents a
longitudinally propagating electric field.

The orthogonality condition (11) is mathematically equivalent to the relativistic hy-
drodynamic equation of motion of a barotropic (isentropic) fluid [18]: ωµν(wuν) = 0,
where ωµν := ∂µ(wuν)− ∂ν(wuµ), uν, and w are the vorticity tensor, 4-velocity, and proper
enthalpy density of the fluid, respectively. This observation suggests that the unknown
form of the 4-vector potential Uµ can be clarified through the Clebsch parameterization [19]
because the Clebsch parameterization is used to study the Hamiltonian structure of the
above-mentioned barotropic fluid motion in terms of a couple of canonically conjugate
scalar parameters (λ, φ) whose two degrees of freedom are equal to those of (~E, ~M) in
electromagnetic waves. Thus, in case (I) of the semi-spacelike CD field, the electromagnetic
vector potential Uµ is parameterized as

Uµ = λ∂µφ, (φ = ∂ν Aν, which satisfies ∂ν∂νφ = 0), (13)

∂ν∂νλ− (κ0)
2λ = 0, (14)

where κ0 is a constant determined by DP experiments. If we introduce two gradient
vectors—Lµ := ∂µλ and Cµ := ∂µφ, then the skew-symmetric field strength Sµν can be
represented by a simple bivector of the form

Sµν = LµCν − LνCµ, → P f (S) := S01S23 + S02S31 + S03S12 = 0, (15)

which shows that, as in the case of ~E and ~H of an electromagnetic wave, the “electric” and
“magnetic” fields of the CD field also satisfy the above orthogonality condition. P f (S) in (15)
is the Pfaffian of the skew-symmetric matrix Sµν : (P f (S))2 = Det(Sµν) and the barotropic
fluid motions governed by the equation of motion ωµν(wuν) = 0 are characterized by the
condition that the Pfaffian vanishes. Another important property of an electromagnetic
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wave is that ~E and ~H are advected along a null Poynting vector. In the CD model now
under consideration, a null vector Cµ would naturally be expected to satisfy

Cν∂νLµ = 0, (16)

from which we obtain

Lµ(Cν∂νLµ) = 0, → Cν∂ν(LµLµ) = 0, (17)

Cµ(Cν∂νLµ) = 0, → Cν∂ν(CµLµ) = 0. (18)

In deriving (18), we utilized the fact that Cν∂νCµ = 0. For (18), the following orthogonality
condition in the CD field

LνCν = 0 (19)

can be imposed as an additional condition, which turns out later to be an important equa-
tion.

To see in what sense (19) is consistent with (15), we consider a null geodesic field
(UνUν = 0):

Uν∂νUµ = Uν(∂νUµ − ∂µUν) = 0, (20)

which is expected to satisfy an extended light field. Using (13) and (15), we readily obtain

Uν∂νUµ = −Sµν(λCν) = (CµLν − LµCν)(λCν) = (LνCν)λCµ, (21)

which vanishes by the orthogonality condition (19). The importance of (19) in the CD field
formulation is that Lµ must be a spacelike vector, because Lµ satisfying (19) is either Cµ or a
spacelike vector, which explains why the λ field introduced in the CD formulation satisfies
the spacelike KG equation given in (14). Using the relations derived above between Cµ and
Lµ, we can show the form of the extended Maxwell’s equation:

∂νSνµ = (κ0)
2Uµ ⇐⇒ [∂ν∂ν − (κ0)

2]Uµ = 0, (with ∂νUν = 0). (22)

The energy-momentum tensor T̂ ν
µ of the lightlike CD field can be derived easily from

the conventional one with the following form: T ν
µ = −FµσFνσ. Considering the sign change

of the energy at the boundary between the timelike and spacelike domains, we define the
tensor as

T̂µν : = SµσS σ
ν = (LµCσ − CµLσ)(LνCσ − CνLσ)

= (LσLσ)CµCν = ρCµCν, ρ := LσLσ < 0. (23)

The negative density ρ corresponds to the negative norm of the longitudinal modes in the
QED, which makes this mode unphysical in the conventional interpretation. However, we
believe that the usage of the term “unphysical” in this context is inappropriate, because if
we regard the CD field as virtual photons, then the former is physical in the sense that the
latter, as the mediator of the electromagnetic force, is physical though it is invisible. As
the argument regarding the reference point of the gravitational potential energy shows,
the decision regarding whether a given quantity under consideration is physical depends
essentially on the physical setting of our problem; therefore, the Clebsch duality relation
between Fµν and Sµν should not be viewed as the duality between physical and unphysical
aspects but instead as the duality between the positive and negative sides of the light-cone
p2 = 0, the latter of which is, as we will see in Section 3 on cosmology, often closely
related to the invisibility of a given quantity. Actually, the “state-dependent” physicality
of the longitudinal photons was already pointed out by Ojima [20], who stated that while
the longitudinal photons or unphysical Goldstone bosons in the Higgs mechanism are
eliminated from the physical space of states in the usual formulation, this statement applies
to the above modes only in their particle forms. In their non-particle forms, the former
appear physically as infrared Coulomb tails, and the latter, as the so-called “macroscopic
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wave functions” arising from the Cooper pairs, both of which play essential physical
roles. The CD formulation based on the Greenberg–Robinson theorem has revealed that
the momenta of the non-particle forms in the above statement are invisible non-localized
spacelike ones. Thus, regarding the negativity of ρ, we point out that it can be likened to
the simple fact that the complexified time coordinate ict in Minkowski space is invisible,
though it is an important element without which we cannot describe a given dynamical
system in a satisfactory way.

In step (II) of the CD field formulation, we relax the condition ∂ν∂νφ = 0 given by
the second equation in (10) to allow the following extended vector potential Uµ, which is
advected by itself along a geodesic:

Uµ :=
1
2
(λCµ − φLµ), =⇒ Uν∂νUµ = −SµνUν +

1
2

∂µ(UνUν) = 0,

UνUν < 0, (24)

∂ν∂νλ− (κ0)
2λ = 0, ∂ν∂νφ− (κ0)

2φ = 0, CνLν = 0. (25)

The form of Sµν, given by the first equation in (15), remains unchanged in (24). Note
that the condition ∂ν∂νφ = 0 (φ = ∂ν Aν) can certainly be considered a gauge fixing
condition, but at the same time, the second equation in (10) can be interpreted as a special
gauge condition where gauge invariance is represented by the charge conservation due to
∂µ∂νFµν = 0, while ∂µφ is not a usual timelike electric current.

In the extended Maxwell’s equation given in (22), an electrically neutral current
(κ0)

2Uµ = (κ0)
2(λ∂µφ) behaves exactly like jµ in the original Maxwell’s equation, which

shows that the constant κ0 serves as a fundamental unit, such as the electric charge. There-
fore, violation of condition (10) causes gauge symmetry breaking, according to which the
CD field extended in step (II) suffers from breakdown of both the gauge symmetry and
conformal symmetry in the sense of UνUν = 0.

Corresponding to the above extension, the energy-momentum tensor satisfying the
conservation law of ∂νT̂ν

µ = 0 is redefined as

T̂µν = Ŝ σ
µσν −

1
2

Ŝ αβ
αβ ηµν, Ŝαβγδ := SαβSγδ,

⇐⇒ Gµν := Rµν − Rgµν/2. (26)

Note that Ŝαβγδ defined above has the same skew-symmetric properties as those of the
Riemann tensor Rαβγδ, including the first Bianchi identity, Sα[βγδ] = 0 (equivalent to
the second equation in (15)), which is valid as Sµν is a bivector field given by the first
equation in (15). Thus, T̂µν given in (26) becomes isomorphic to the Einstein tensor Gµν :=
Rµν − Rgµν/2, where the Ricci tensor Rµν := Rσ

µνσ.

2.2. Quantization of the CD Field and DP Model

Going back to (23), we note that it is isomorphic to the energy-momentum tensor of
freely moving fluid particles. The ρ field for an actual fluid will be discretized if the kinetic
theory of molecules is taken into account. When the light field is quantized, this form will
obey Planck’s quantization of light energy E = hν. As the CD field variable Lµ has the
dimension of length, we introduce a certain quantized elemental length ldp whose inverse
is κ0, namely, the discretization of ρ leads to

κ0 := (ldp)
−1, (27)

which can be considered an energy quantization of the CD field. Recall that the Dirac
equation of the form

(iγν∂ν + m)Ψ = 0 (28)
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can be regarded as the “square root” of the timelike KG equation (∂ν∂ν + m2)Ψ = 0.
Therefore, the Dirac equation for the spacelike KG equation (∂ν∂ν − (κ0)

2)Ψ = 0 must be

i(γν∂ν + κ0)Ψ = 0. (29)

On the other hand, an electrically neutral Majorana representation exists for (28), in
which all the γ matrices become purely imaginary such that these matrices have the
form (γν

(M)
∂ν + m)Ψ = 0, which is identical to (29). The Majorana field is fermionic with a

half-integer spin 1/2; thus, the same (momentum) state cannot be occupied by two fields
according to Pauli’s exclusion principle. Note that by using the Pauli–Lubanski vector
Wµ to describe the spin polarization of moving particles, we can find a specific orthogo-
nal momentum configuration of a pair of Majorana fields whose resultant spin becomes
1, namely,

Mµν pν = Nµνqν = Wµ, (30)

where Mµν and pν denote the angular and linear momenta of a given Majorana field,
respectively, while Nµν and qν are the corresponding momenta of the other, of which the
linear momentum qν is perpendicular to pν. We believe that this configuration (30) gives
a quantum mechanical justification for the orthogonality condition (19) and (25) of the
CD field.

For a plane wave solution (λ = λ̂c exp[i(kνxν)]) to the spacelike KG equation (14),
Lν = ∂νλ satisfies

LνL∗ν = −(κ0)
2(λ̂cλ̂∗c ) = const. < 0, (31)

which shows that the momentum vector Lµ lies in a submanifold of the Lorentzian manifold,
called de Sitter space in cosmology, which is a pseudo-hypersphere with a certain constant
radius embedded in R5. Quite independent of the cosmological arguments on de Sitter
space, Snyder [21] discussed the unique role of this space in spacetime quantization. He
showed that with the introduction of the hypothetical momentum 5-vector ηµ(0 ≤ µ ≤ 4)
in R5 constrained to lie on the de Sitter space, i.e., ηνη∗ν = −(ηc)2 = const., the following
commutation relations are derived. For the definitions of pµ, p̂µ, and x̂µ, we have

pµ : =
h̄
lp

ηµ

η4
, p̂µ := − ih̄

lpη4

∂

∂ηµ
, x̂µ := ilp

(
η4

∂

∂ηµ
− ξµηµ

∂

∂η4

)
;

(0 ≤ µ ≤ 3), (32)

where lp denotes the Planck length, and ξµ takes a value of −1 when µ = 0 and 1 when
µ 6= 0, from which we obtain

[
x̂µ, p̂µ

]
= ih̄

[
1 + ξµ

(
lp

h̄

)2

(pµ)
2

]
,

[x̂µ, p̂ν] =
[
x̂ν, p̂µ

]
= ih̄

(
lp

h̄

)2

pµ pν 0 ≤ (µ, ν) ≤ 3, (33)

[
x̂i, x̂j

]
=

i(lp)2

h̄
εijkLk,

[
x̂0, x̂i

]
=

i(lp)2

h̄
Mi ; 1 ≤ (i, j, k) ≤ 3, (34)

where εijk is Eddington’s epsilon, and Li and Mi are angular momentum vectors generated,
respectively, by (spatial-spatial) and (spatial-temporal) rotations. Snyder further showed that
the “Lorentz transformation” in his spacelike momentum space {ηµ}, (0 ≤ µ ≤ 3) naturally
induces the Lorentz transformation in the usual spacetime {xµ}. Thus, the energy-momentum
tensor T̂µν of the CD field given in (26) can be regarded as the one constructed on this Snyder’s
momentum “spacetime” ηµ with Lorentz invariance as in the case of Rµν, also constructed on the
spacetime xµ with Lorentz invariance, which becomes a very important property in the discussion
of dark energy in the next section. In [12] and S3O, we showed that, by virtue of the bivector
property of Sµν given in (15), the form of T̂µν can be extended to a curved spacetime. Thus,
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the intriguing isomorphism between T̂µν and Gµν in (26) seems to suggest an important
consequence: the quantization of the CD field attained by the above commutation relations
may also be applied to the quantization of the gravitational field. The research pursuing
this goal can be found, for instance, Girelli [22] and Glikman [23].

Now, we move on to a new DP model. Although the constant κ0 plays a crucial role in
formulating the CD field, its value clearly cannot be determined solely by theoretical argu-
ments. We already explained in S3O how the value of the DP constant κ0 was estimated by
the extensive DP experiments by Ohtsu, who utilized the photochemical vapor deposition
and autonomous etching techniques [24]. Through those experiments, the maximum size
of the DP that can be considered as ldp introduced in (27) was estimated to be

50 nanometer < ldp = (κ0)
−1 < 70 nanometer. (35)

As emphasized in the introduction, we do not yet know a reliable QFT that can deal
with the off-shell properties of the field playing an important role in the DP generating
mechanism. Thus, we need to resort to a certain kind of simplified argument to bring in
the experimental outcome to CD field theory. In the following, we give such a simplified
argument. In the first paragraph of the introduction, we mentioned that the existence
of point-like singularities, similar to the pointed end of a fiber probe or impurities with
extremely tiny size scattered across a given background material, is the crucial element for
generating DPs. We can safely say that field interactions in which these singularities come
into play should be so serious that the involvement of the spacelike momenta predicted
by the Greenberg–Robinson theorem will be crucial in these cases compared with those
without singularities.

Remember that, in the introductory Section 1, we have touched upon a heuristic
toy model with which we show the intervention of spacelike momentum in the field
interactions. Aharonov et al. [25] conducted an advanced analysis of the response behavior
of the spacelike KG equation perturbed by a point-like delta function δ(x0)δ(x1), in which
the above essential aspect was incorporated. They showed that the solutions excited by
this point-like disturbance consist of two different types: the stable spacelike mode and
the unstable timelike mode. The unstable timelike mode excited from the spacelike KG
Equation (14) with spherical symmetry has the form λ(x0, r) = exp(±k0x0)R(r), where
R(r) satisfies

R′′ +
2
r

R′ − (κ̂r)
2R = 0, (κ̂r)

2 := (k0)
2 − (κ0)

2 > 0, (36)

according to which R(r) is the Yukawa potential of R(r) = exp(−κ̂rr)/r. For a Majorana
field, as with the quantum version of the λ field, the energy in terms of k0 is discretized by
κ0, as shown in (27). Thus, the nonzero minimum Min[κ̂r] in the Yukawa potential is κ0,
which gives the maximum size of the localized DP to be compared with the experimental
result (35). Although the CD field consists of a pair of Majorana fields satisfying the orthog-
onality conditions (19) and (25), the orthogonal configuration must be broken down by the
perturbation, and the timelike pair will turn, respectively, into λ(x0, r) = exp(±k0x0)R(r),
namely, particle and antiparticle pairs, as an electrically neutral antiparticle can be consid-
ered a particle traveling backward in time. The excited field is non-propagating in nature;
thus, a pair of particle and antiparticle fields will be combined into either an “electric” field
with spin 0 or a “magnetic” field with spin 1 [26]. We believe that the DP is generated
through this pair annihilation of the Majorana field. As the DP field is basically electromag-
netic, once it is generated, its behavior in a uniform environment can be described by the
Proca equation of the form ∂ν∂ν Aµ + (κ0)

2 Aµ = 0. From the viewpoint of nanophotonical
engineering, however, what really matters is the control of the DP energy flows driven by
the existence of point-like sources and sinks. In the above argument, we showed that the
energy of incident photons working as the triggering cause of δ(x0) at the singular point
eventually turns into the energy of the DP. At the present stage, we do not have clear knowl-
edge of the sink mechanisms, but the research on DP energy flow with source–sink-type
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driving forces is pursued actively by employing a certain class of quantum walk models
[27–29]. Intuitively, however, we can expect that some kind of ζ-function enters here as the
carrier to convey the above singularity waves, which explains the observation of ζ-function
singularities in the quantum walks. Moreover, the parallelism between ζ-functions and
partition functions (the latter appearing in statistical mechanics) explains the relevance of
Tomita–Takesaki modular duality [30] to the basis of the conformal symmetry discussed
below.

3. On Dark Energy and Dark Matter

In our discussion so far, we have developed a new concept of a CD field carrying
spacelike momentum modes, which are required for electromagnetic field interactions. In
comparison to the conventional QFT, the CD field can be compared with invisible virtual
photons that can be excited from the vacuum (|0〉 = 0), regarded as the ground state of
a one-sided energy spectrum within the bound of the uncertainty principle. Apparently,
simply employing this excitation scenario is problematic because the concept of the CD
field contradicts the vacuum state mentioned above. We believe that the orthogonal relation
between a pair of momentum vectors pν and qν given in (30) gives us a hint to solve this
problem concerning the ground state. For spacetime with three spatial dimensions, as
shown below, the maximum number of Majorana fermion fields as the limited capacity of
spacetime is also three, of which the configuration is shown by

Mµν pν = Nµνqν = Lµνrν = Wµ. (37)

This compound state with a resultant spin 3/2 is called a Rarita–Schwinger state, which
we denote by |M3〉g. The role of the vector |M3〉g is to give the GNS cyclic vector of a
mixed state which is disjoint from the vacuum state whose cyclic vector is given by |0〉 [31].
The important characteristic of |M3〉g is that the CD vector boson field can be excited from
any of the three different pairs, which propagates along one of the (x1, x2, x3) directions.
In view of the universality of electromagnetic interactions, the incessant occurrence of
excitation–de-excitation cycles between |M3〉g and non-ground states makes |M3〉g a fully
occupied state in the macroscopic time scale. Therefore, we can say that |M3〉g exists not as
a momentary virtual state, but also as a stable invisible off-shell state. In the following, we
show that |M3〉g exerts on the universe a cosmological effect identified as dark energy.

To investigate the property of |M3〉g, let us consider plane wave solutions λ and φ for
the spacelike case of UνUν < 0, in which λ = Nλλ̂c exp(ikνxν) and φ = Nφφ̂c exp(ikνxν),
with kνkν = −(κ0)

2, where λ̂c and φ̂c denote elemental amplitudes of the respective fields,
and Nλ and Nφ are the numbers of the respective modes. As Equation (15) shows, λ and φ
always appear in the form of a product; thus, we may rewrite these two expressions as

λ = N(κ0)
−2 exp (ikνxν), φ = φ̂c exp (ikνxν), (38)

where N is a combined number N := NλNφ, and we can identify λ̂c as λ̂c = (κ0)
−2, as λ̂c

has the dimension of (length)2. By substituting these into the first equation in (26) and
setting N = 1, we obtain the absolute value of T̂ ν

ν (1), denoted as |T̂ ν
ν (1)|:

|T̂ ν
ν (1)| = −2[φ̂c(φ̂c)

∗] < 0, (39)

where (•)∗ denotes the complex conjugate of (•). The right-hand side of (39) can be
evaluated by the light-like case of the CD field (23), in which we have T̂µν = ρCµCν. For the
light-like case, we have φ = φ̂c exp(ikνxν), kνkν = 0 and λ = N(κ0)

−2 exp(ilνxν), lνlν =
−(κ0)

2, from which we have

(Cµ)
∗Cν = kµkνφ̂c(φ̂c)

∗, ρ = −N2(κ0)
−2. (40)
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Next, we consider a case in which the kµ vector of φ is parallel to the x1 direction and
consider a rectangular parallelepiped V spanned by the vectors (1/k1, 1, 1). For k0 = ν0/c,
where c and ν0 denote the light velocity and the frequency of the φ field, the volume integral
of T̂ 0

0 /(−N2) over V as the energy per quantum is

1
(−N2)

∫

V
T̂ 0

0 dx1dx2dx3 = (κ0)
−2ε[φ̂c(φ̂c)

∗]
ν0

c
, (41)

where ε denotes the unit length squared. Equating (41) with E = hν0, we obtain

hc(κ0)
2 = ε[φ̂c(φ̂c)

∗], ε = 1(meter)2. (42)

As stated after (37), we need three fields propagating along the x1, x2, and x3 di-
rections to achieve isotropic radiation of the CD field. These three fields are given by
(S23, S02), (S31, S03), and (S12, S01). The energy-momentum tensor T̂ ν

µ (3) derived by the
superposition of these fields becomes

T̂ ν
µ (3) =




−3σ2 −τσ −τσ −τσ
τσ 2τ2 − σ2 0 0
τσ 0 2τ2 − σ2 0
τσ 0 0 2τ2 − σ2,


. (43)

In deriving (43), we set S23 = S31 = S12 = σ and S01 = S02 = S03 = τ. We note that T̂ ν
µ (3)

can be regarded as the energy-momentum tensor of the anti-dark energy (dark energy with
a negative energy density, that is, T̂0

0 (3) = −3σ2 < 0). Dark energy (with positive energy
density) ∗T̂ ν

µ (3) having exactly the same trace as that of the anti-dark energy T̂ ν
µ (3) can be

introduced by the Hodge dual exchange between (σ, τ) and (iτ, iσ) in (43), which becomes

∗T̂ ν
µ (3) =




3τ2 τσ τσ τσ
−τσ −2σ2 + τ2 0 0
−τσ 0 −2σ2 + τ2 0
−τσ 0 0 −2σ2 + τ2,


. (44)

At this point, we recall the important remark on the validity of extending our discus-
sion, which started from Minkowski space, to the case of a curved spacetime. As already
pointed out in the explanation of Snyder space written in italics below in Equation (34), the
isomorphism between T̂µν and Gµν given in (26) can be extended to a curved spacetime
by virtue of the bivector property of (15). If the dark energy is modeled by a cosmological
term of Λgµν, then the Einstein field equation with the sign convention of Rµν = Rσ

µνσ

together with the metric convention of (+1,−1,−1,−1) becomes

R ν
µ −

R
2

g ν
µ + Λg ν

µ = −8πG
c4 T ν

µ , (45)

where Λ becomes negative for an expanding universe. Before proceeding further, we
note that ∗T̂ ν

µ (3) is not a quantity that directly fits into the conventional cosmological
analysis utilizing the isotropic spacetime structure assumed by Weyl’s hypothesis on the
cosmological principle. First, as ∗T̂ ν

µ (3) is spacelike in nature, it cannot be reduced to
a diagonalized matrix form. Second, it is the energy-momentum tensor of fermionic
|M3〉g with spin 3/2. The crucial problem in our analysis therefore is whether we can
find observable quantities in ∗T̂ ν

µ (3). Because the relevant criterion for singling out an
observable quantity may depend on the situation, we have no choice but to make a
good guess. The fact that seems to work as “the guiding principle” is that within the
framework of relativistic QFT, any observable without exception associated with a given
internal symmetry is invariant under the action of a transformation group materializing
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the symmetry under consideration. By extending this knowledge on the internal symmetry
to the external (spacetime) one, we assume that the trace Λdeg ν

ν defined by

Λdeg ν
ν := −8πG

c4
∗T̂ ν

ν (3) > 0, → Λde =
12πGh

c3ε
(κ0)

2 (46)

is observable as the invariant of the general coordinate transformation, which is consistent
with the built-in Lorentz invariance of Snyder’s momentum space on which the CD field
is constructed. Thus, the validity of our new model on dark energy can be checked by
comparing the following two models:

R ν
µ −

R
2

g ν
µ −Λobsg ν

µ = −8πG
c4 T ν

µ ,

R ν
µ −

R
2

g ν
µ = −8πG

c4 T ν
µ + Λdeg ν

µ , (47)

where Λobs denotes the value obtained by Planck satellite observations. (In S3O, Λobs in
the above Equation (47) appeared with the wrong sign in the corresponding Equation
(25), which should be corrected.) Using (39), ∗T̂ ν

ν (3) = 3T̂ ν
ν (1), and (42), we obtain

Λde ≈ 2.47× 10−53 m−2 and Λobs ≈ 3.7× 10−53 m−2 [32]. Thus, |M3〉g seems to be a
promising candidate model for dark energy.

In the above arguments on the dark energy model, the physical meaning of the “real”
cosmological term Λgµν should be revised, because it does not correspond in our model to
dark energy. We believe that one of the intriguing possibilities is that Λdmgµν with Λdm > 0
(valid in our sign convention) represents dark matter. The main reason for this is due to a
simple fact that we can represent the metric tensor gµν in terms of the Weyl (conformal)
curvature tensor Wαβγδ as long as its magnitude does not vanish, namely,

gµν =
4

W2 WµαβγW αβγ
ν , W2 := WαβγδWαβγδ 6= 0, (48)

as shown by straightforward calculations [33]. Recall that Weyl curvature represents the
deviation of spacetime from the conformally flat Friedmann–Robertson–Walker (FRW)
metric for an isotropic universe. In addition, the monotonic decrease in W2 along the radial
direction in the field of Wαβγδ in the well-known spherically symmetric Schwarzschild
outer solution of a given star suggests that the local maxima of W2 would behave as
“particles” or that its existence tends to correlate with the created matter field. Therefore,
T̃µν, defined as

T̃µν := Λdmgµν, Λdm > 0, g00 > 0, (49)

to be put on the left-hand side of (45), gives an energy-momentum tensor of this pseudo-
matter field as a candidate for dark matter. The existence of T̃µν will further accelerate the
deviation of spacetime from the FRW metric and thus serve as the fostering mechanism
of galaxy formation. (In Equation (30) of S3O, the above T̃µν was defined with negative
Λdm, which is a second error related to the first error of +Λobs in (47)). In determining the
magnitude of Λdm, we first refer to the observational fact that the estimated abundance
ratio of dark energy to dark matter is 3 : 1. AS Λde = −∗T̂ ν

ν (3) = −3T̂ ν
ν (1), we have

Λdm = −T̂ ν
ν (1) =

Λde
3

, (50)

the theoretical justification of which is given in the next section. Notice that the constant
T̂ ν

ν (1) appearing first in (39) is a quantity belonging to the off-shell electromagnetic field
discussed in Section 2.1 in which spacelike CD field is introduced by the conformal symme-
try breaking (CSB) of light-like CD field. Although we already alluded to the importance
of CSB in our previous paper (S3O), our discussion on it in the context of cosmological
dynamics remains quite vague. In the subsequent section covering the main theme of
this paper, we will show that the new notion of CSB which applies simultaneously to
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electromagnetic as well as gravitational fields will play an important role in connecting our
novel cosmological model to the preceding intriguing CCC proposed by Penrose [14,34].

4. Dressed Photon Constant and a New Version of CCC
4.1. Dressed Photon Constant

Using (39), (42), and (50), we have

Λdm =
4πGh(κ0)

2

c3ε
, (51)

which is rewritten as follows in terms of the Planck length lp, length scales of the universe
ldm, and DP:

lp :=
√

hG/c3, ldm :=
√
(Λdm)−1, ldp = (κ0)

−1, (52)

lpldm =

√
ε

2
√

π
ldp →

[
lpldm = (l̂dp)

2
]
. (53)

Equation (53) reveals that if we choose l̂dp := ldp/2
√

π as the third component of a natural
unit in which we set l̂dp = 1, then l̂dp gives the geometric mean of the smallest scale lp
and the largest one of ldm in that natural unit system. By rewriting the second equation
in (46) as

ldp =

√
12πGh

c3ε
(Λde)

−1/2, → l†
dp =

√
12πGh

c3ε
(Λobs)

−1/2, (54)

we can use this equation to estimate the DP constant l†
dp solely by the fundamental physical

constants G, h, and c together with the observed cosmological constant Λobs in place of the
above Λde. Directly from the second equation in (54), we obtain

l†
dp ≈ 40.0 nm,

[
Experiments : 50 nm < ldp < 70 nm

]
. (55)

4.2. New Version of CCC

The main aim of this subsection is to explain a new factor we would like to add to the
CCC which has more than a decade of research history. At the present moment, we are not
sure whether our new factor will fit consistently into the basic schemes of the CCC so far
investigated. However, we hope that our proposal presented here could be a somewhat
useful contribution to the CCC which is related, for instance, to a particular study by
Lübbe [35] who discussed the inclusion problem of a cosmological constant. As our dark
energy model introduced in (47) is related to de Sitter space, we start from the run-through
of the well-known characteristics of it by looking into the Einstein field equation

R ν
µ −

R
2

g ν
µ −Λdeg ν

µ = 0, (56)

which yields a familiar solution given by

ds2 = (cdt)2 − (R0)
2 exp [2

√
Λde

3
ct][dr2 + r2(dθ2 + sin2 θ)dϕ2], (57)

where the constant R0 serves as the coefficient of the time-dependent scale factor. In the
use of (50), this solution can be simplified by taking R0 = lp into

ds2 = (cdt)2 − (lp)
2 exp [2

√
Λdmct][dr2 + r2(dθ2 + sin2 θ)dϕ2]. (58)

At the end of Section 3, the simultaneous CSB in electromagnetic and gravitational
fields was mentioned. We now explain what this exactly means. Recall that the energy-
momentum tensor T̂ ν

µ of the spacelike (UνUν < 0) CD field is given in Section 2.1 by (26),
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which is isomorphic to the Einstein tensor G ν
µ . The same quantity T̂ ν

µ also emerges from
the light-like case of UνUν = 0 by replacing ∂ν∂νφ = 0 with [∂ν∂ν − (κ0)

2]φ = 0, which
can be regarded as the breaking of both symmetries, i.e., conformal and gauge (cf. (10)).
Therefore, this CSB from the light-like to the spacelike CD field can be seen as responsible
simultaneously for the breaking from ds2 = 0 to nonzero ds2 in (58) through (53), which
corresponds to the CSB of gravitational field with the scale parameter Λdm.

A well-known remarkable characteristic of the solution (58) is that it is transformed
into a stationary solution

ds2 =
(

1−Λdm(r′)2
)
(cdt′)2 − (dr′)2

(1−Λdm(r′)2)
− (r′)2(dθ2 + sin2 θdϕ2) (59)

by the following variable changes:

lpr =
r′√
D

exp [−
√

Λdmct′], t = t′ +
1
2c

√
1

Λdm
ln D, (60)

where D is defined either by 1 > D := 1 − Λdm(r′)2 > 0 (case I) or by 1 > D :=
Λdm(r′)2 − 1 > 0 (case II). Note that the metric (59) is similar in form to the Schwarzschild
metric given below, for which an event horizon exists at r′ = α, while that in (59) exists at
r′ =

√
1/Λdm. (See Figure 1)

ds2 =
(

1− α

r′
)
(cdt′)2 − (dr′)2

(
1− α

r′
) − (r′)2(dθ2 + sin2 θdϕ2). (61)
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In case I of the stationary metric (59), we have r′ = 0 by the synchronization t = t′

of t and t′ owing to (60). If t′ is adjusted as t′ = Θt, (Θ > 1), then we see that r′

moves from 0 to 1/
√
(Λdm) as t moves from 0 to +∞. Similarly, in case II, we see that

r′ moves from
√

2/(Λdm) to 1/
√
(Λdm) as t moves from 0 to +∞. This dual structure,

illustrated in Figure 1, clearly shows that by taking t = 0 as the origin of time from which
twin Big Bang universes evolve, they will meet at the event horizon in (59) an eon later
(t = ∞). To the best of our knowledge, the concept of twin universes with matter vs.
antimatter duality was first discussed by Petit [15]. We believe that his cosmological model
fits exactly into the configuration illustrated in Figure 1, which tells us that

√
(Λdm)−1

is a genuine characteristic length scale of our universe. This justifies the fact that Λdm
defined in (50) is the cosmological constant that appears in the form of (49). The forward
and backward time evolutions of twin universes correspond, respectively, to positive and
negative field operators of the 4-momentum, while the existence of twin universes naturally
explains the reason why one-sided energy spectra at the level of state vector space works
for many practical situations in each universe. If the birth of these twin universes was
brought about by conformal symmetry breaking of certain light fields in which the duality
between “matter (with positive energy) and antimatter (with negative energy)” works as
the separation rule of the twin structure, then the twin pair will return to the original light
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fields when they meet at the event horizon. The next Big Bangs of the twin pair will occur
at certain locations on this event horizon distant from each other by

√
2/Λdm.

According to the arguments developed thus far, we can say that the original conformal
light field is composed of light fields with the following duality structures:

[
T ν

µ = −FµσFνσ, ∗T̂ ν
µ =∗ (SµσSνσ), T 0

0 > 0, ∗T̂ 0
0 > 0

]
, (62)

[
∗T ν

µ = −∗(FµσFνσ), T̂ ν
µ = SµσSνσ, ∗T 0

0 < 0, T̂ 0
0 < 0

]
, (63)

where the symbol ∗ denotes the Hodge duality explained in the derivation of (44). Although
(62) and (63) can be considered as light and anti-light (light with positive energy moving
backward in time) fields, respectively, they can coexist as free modes without interacting
with each other, unlike the case of matter and antimatter interactions. As all of these fields
are trace free, the associated Ricci scalar curvature is zero. Equation (26) tells us that the
Riemann curvature associated with these light fields takes the form Rλρµν = FλρFµν(=
SλρSµν). In addition to R ν

ν = 0, we can readily show RµνRµν = 0 using (23). Under the
former condition R ν

ν = 0, the Weyl tensor Wλρµν assumes the form

Wλρµν = Rλρµν +
1
2
(Rλµgρν − Rλνgρµ − Rρµgλν + Rρνgλµ); (64)

thus, by direct calculations using the latter condition of RµνRµν = 0, we obtain W2 = 0.
Therefore, for light fields (62) and (63), we have

R ν
ν = 0, W2 = WναβγWναβγ = 0. (65)

The second equation in (65) is related to Penrose’s Weyl curvature hypothesis [14].
In modern cosmology, cosmic inflation theory was introduced to explain the observed

highly tuned initial condition of the Big Bang, in which the notion of “false vacua” plays a
key role in explaining the tremendous exponential expansion of space. In the introduction,
however, we pointed out that the notion of the vacuum state in conventional QFT is
highly biased by the one in Fock space, which may be called “Fock vacuum prejudice” if
adhering to the idea of creation from emptiness. One of the aims of our present paper is to
overcome this prejudice in the spirit of Occam’s razor as follows: in view of the present
circumstances showing that inflation theory seems to be “lost in a maze” in achieving the
above-mentioned original goal, the basic premise of our working hypothesis in cosmology
can be shifted from the Fock vacuum to the phase transition of the extended light field
arising from its CSB, according to which a simpler alternative view emerges such that the
initial condition of the Big Bang and the dynamics of both dark energy and matter can be
naturally explained.

For light fields, ds2 = 0, the amplitude of the smallest perturbations of CSB in the
length scale would be lp in (58), but its magnitude in the converted energy scale is tremen-
dously large because energy is inversely proportional to length. By virtue of the Weyl
curvature hypothesis of (65), and especially of the peculiar form of (49) through which
the Weyl tensor contributes to part of the energy-momentum field, we see that the Weyl
contribution to the energy field is a very low value of Λdm. Therefore, the energy field with
extremely high density thus created must have a distribution in spacetime very close to the
FRW metric on which small amplitude perturbations of W2 exist. The emergence of the
FRW metric is the result of unfolding the “blueprint” (14) encoded in the lightlike CD field.
Note that in the limit of W2 → 0, the energy-momentum field (49) approaches the anti-de
Sitter (AdS) space; thus, the weak gravitational field and high energy conformal field share
a common AdS spacetime, which is an essential part of the Maldacena duality [36]. In our
new revised version of the CCC of twin universes, the beginning and end of the cycle are,
respectively, compared to the pair creation and annihilation of elementary particles through
the intervention of conformal light fields. Within the cycle in each universe, a couple of
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different classes of entities exist, i.e., both visible matter and invisible dark energy and dark
matter exist. In S3O, we already discussed an extended thermodynamical viewpoint on
the dynamics at cosmological scales.

When we take into account the remarkable abundance ratios of invisible dark energy
and dark matter in comparison to the negligible one of ordinary visible matter, the time evo-
lution of visible material subsystems in the universe, for instance, galaxy cluster formations,
may be compared to the “heat engines” working between invisible “heat reservoirs” with
higher and lower temperature, which, respectively, correspond to dark matter with positive
energy and negative dark energy. If we denote the space averaged W2 by W2|ave., then
due to the property of universal gravitation, it will increase with the passage of time and
thus may be related to the gravitational entropy of the visible subsystem in the universe.
From this viewpoint, the effect of the gravitational field, including that of dark matter,
modeled as Λdmgµν in our theory, can be interpreted by a certain model of thermodynamics.
Actually, attempts at this have already been made, for instance, in [37,38].

As the final remarks on CCC, first, we note that the conformal symmetry of source-
free Maxwell’s equation holds well only in four dimensions, which may explain why
the dimensions of spacetime in which we live are four. Second, the first author would
appreciate if his philosophical preference of helical evolution to cyclic motion is reflected
in CCC. His speculative “Book of Genesis” on CCC is as follows:
In the beginning, God, as a mathematician, created the primordial light with conformal
symmetry, and God said: “Let there be conformal symmetry breaking, and there were twin
universes, beginning their long journey towards a brighter future of a light world one stage
higher in eternal evolution.”
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