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Abstract: The purpose of this paper is to build a new bridge between category theory and a general-
ized probability theory known as noncommutative probability or quantum probability, which was
originated as a mathematical framework for quantum theory, in terms of states as linear functional
defined on category algebras. We clarify that category algebras can be considered to be generalized
matrix algebras and that the notions of state on category as linear functional defined on category alge-
bra turns out to be a conceptual generalization of probability measures on sets as discrete categories.
Moreover, by establishing a generalization of famous GNS (Gelfand–Naimark–Segal) construction,
we obtain a representation of category algebras of †-categories on certain generalized Hilbert spaces
which we call semi-Hilbert modules over rigs. The concepts and results in the present paper will be
useful for the studies of symmetry/asymmetry since categories are generalized groupoids, which
themselves are generalized groups.

Keywords: category; algebra; state; category algebra; state on category; noncommutative probability;
quantum probability; GNS representation

1. Introduction

In the present paper, we study category algebras and states defined on arbitrary
small categories to build a new bridge between category theory (see [1–4] and references
therein, for example) and noncommutative probability or quantum probability (see [5–7]
and references therein, for example), a generalized probability theory which was originated
as a mathematical framework for quantum theory.

A category algebra is, in short, a convolution algebra of functions on a category.
For example, on certain categories called finely finite category [8], which is a categorical
generalization of locally finite poset, the convolution operation can be defined on the set of
arbitrary functions and it becomes a unital algebra called incidence algebra. Many authors
have studied the notions of Möbius inversion, which has been one of fundamental part of
combinatorics since the pioneering work by Rota [9] on posets, in the context of incidence
algebras on categories ([8,10–14], for example).

There is another approach to obtain the notion of category algebra. As is well known,
a group algebra is defined as a convolution algebra consisting of finite linear combinations
of elements. By generalization with replacing “elements” by “arrows”, one can obtain
another notion of category algebra (see [13], for example), which also includes monoid
algebra (in particular polynomial algebras) and groupoid algebras as examples. Please
note that for a category with infinite number of objects, the algebra is not unital.

The category algebras we focus on in the present paper are unital algebras defined
on arbitrary small categories, which are slightly generalized versions of algebras studied
under the name of the ring of an additive category [15]. These category algebras include
the ones studied in [13] as subalgebras in general, and they coincide for categories with
finite number of objects. Moreover, one of the algebras we study, called “backward finite
category algebra”, coincides with incidence algebras for combinatorically important cases
originally studied in [9].
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The purpose of this paper is to provide a new framework for the interplay between
regions of mathematical sciences such as algebra, probability and physics, in terms of
states as linear functional defined on category algebras. As is well known, quantum theory
can be considered to be a noncommutative generalization of probability theory. At the
beginning of quantum theory, matrix algebras played a crucial role (see [16] for example).
In the present paper, we clarify that category algebras can be considered to be generalized
matrix algebras and that the notions of states on categories as linear functionals defined on
category algebras turns out to be a conceptual generalization of probability measures on
sets as discrete categories (For the case of states on groupoid algebras over the complex
field C it is already studied [17]).

Moreover, by establishing a generalization of famous GNS (Gelfand–Naimark–Segal)
construction [18,19] (as for the studies in category theoretic context, see [20–22] for example),
we obtain a representation of category algebras of †-categories on certain generalized
Hilbert spaces (semi-Hilbert modules over rigs), which can be considered to be an extension
of the result in [17] for groupoid algebras over C. This construction will provide a basis
for the interplay between category theory, noncommutative probability and other related
regions such as operator algebras or quantum physics.

Notation 1. In the present paper, categories are always supposed to be small (This assumption may
be relaxed by applying some appropriate foundational framework). The set of all arrows in a category
C is also denoted as C. |C| denotes the set of all objects, which are identified with corresponding
identity arrows, in C. We also use the following notations:

C′CC := C(C, C′), CC := tC′∈|C|C(C, C′), C′C := tC∈|C|C(C, C′),

where C(C, C′) denotes the set of all arrows from C to C′.

2. Category Algebras

We introduce the notion of rig, module over rig, and algebra over rig in order to study
category algebras in sufficient generality for various future applications in noncommu-
tative probability, quantum physics and other regions of mathematical sciences such as
tropical mathematics.

Definition 1 (Rig). A rig R is a set with two binary operations called addition and multiplication
such that

1. R is a commutative monoid with respect to addition with the unit 0,
2. R is a monoid with respect to multiplication with the unit 1,
3. r′′(r′ + r) = r′′r′ + r′′r, (r′′ + r′)r = r′′r + r′r holds for any r, r′, r′′ ∈ R (Distributive

law),
4. 0r = 0, r0 = 0 holds for any r ∈ R (Absorption law).

Definition 2 (Module over Rig). A commutative monoid M under addition with unit 0 together
with a left action of R on M (r, m) 7→ rm is called a left module over R if the action satisfies
the following:

1. r(m′ + m) = rm′ + rm, (r′ + r)m = r′m + rm for any m, m′ ∈ M and r, r′ ∈ R.
2. 0m = 0, r0 = 0 for any m ∈ M and r ∈ R.

Dually we can define the notion of right module over R.
Let M is left and right module over R. M is called R-bimodule if

r′(mr) = (r′m)r

holds for any r, r′ ∈ R and m ∈ M.
The left/right action above is called the scalar multiplication.
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Definition 3 (Algebra over Rig). A bimodule A over R is called an algebra over R if it is also a
rig with respect to its own multiplication which is compatible with scalar multiplication, i.e.,

(r′a′)(ar) = r′(a′a)r, (a′r)a = a′(ra)

for any a, a′ ∈ A and r, r′ ∈ R.

Usually the term “algebra” is defined on rings and algebras are supposed to have
negative elements. In this paper, we use the term algebra to mean the module over rig
with multiplication.

Definition 4 (Category Algebra). Let C be a category and R be a rig. An R-valued function α
defined on C is said to be of backward (resp. forward) finite propagation if for any object C there
are at most finite number of arrows in the support of α whose codomain (resp. domain) is C. The
module over R consisting of all R-valued functions of backward (resp. forward) finite propagation
together with the multiplication defined by

(α′α)(c′′) = ∑
{(c′ ,c)| c′′=c′◦c}

α′(c′)α(c), c, c′, c′′ ∈ C

becomes an algebra over R with unit ε defined by

ε(c) =

{
1 (c ∈ |C|)
0 (otherwise)

,

and is called the category algebra of backward (resp. forward) finite propagation R0[C] (resp. 0R[C])
of C over R. The algebra 0R0[C] over R defined as the intersection R0[C] ∩ 0R[C] is called the
category algebra of finite propagation of C over R.

Remark 1. 0R0[C] coincide with the algebra studied in [15] if R is a ring.

In the present paper, we focus on the category algebras R0[C],0R[C] and 0R0[C] which
are the same if |C| is finite, although other extensions or subalgebras of 0R0[C] are also of
interest (see Examples 4 and 7).

Notation 2. In the following we use the term category algebra and the notation R[C] to denote
either of category algebras R0[C],0R[C] and 0R0[C].

Definition 5 (Indeterminates). Let R[C] be a category algebra and c ∈ C. The function χc ∈
R[C] defined as

χc(c′) =

{
1 (c′ = c)
0 (otherwise)

is called the indeterminate (See Example 2) corresponding to c.

For indeterminates, it is easy to obtain the following:

Theorem 1 (Calculus of Indeterminates). Let c, c′ ∈ C, χc, χc′ be the corresponding indetermi-
nates and r ∈ R. Then

χc′χc =

{
χc′◦c (dom(c′) = cod(c))
0 (otherwise),

rχc = χcr.
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In short, a category algebra R[C] is an algebra of functions on C equipped with the
multiplication which reflects the compositionality structure of C. By the identification of
c ∈ C 7→ χc ∈ R[C], categories are included in category algebras.

Let us establish the basic notions for calculation in category algebras:

Definition 6 (Column, Row, Entry). Let α ∈ R[C] and C, C′ ∈ |C|. The elements αC, C′α, C′αC ∈
R[C] defined as

αC(c) =

{
α(c) (c ∈ CC)

0 (otherwise),

C′α(c) =

{
α(c) (c ∈ C′C)
0 (otherwise),

C′αC(c) =

{
α(c) (c ∈ C′CC)

0 (otherwise),

are called the C-column, C′-row and (C′, C)-entry of α, respectively.

Please note that either of the data αC(C ∈ |C|) , C′α(C′ ∈ |C|) or C′αC (C, C′ ∈ |C|)
determine α. Moreover, if |C| is finite,

α = ∑
C,C′∈|C|

C′αC.

By definition, the following theorem holds:

Theorem 2 (Polynomial Expression). For any α ∈ R[C]

C′αC = ∑
c∈C′CC

α(c)χc = ∑
c∈C′CC

χcα(c).

If |C| is finite,
α = ∑

c∈C
α(c)χc = ∑

c∈C
χcα(c).

The formulae above clarify that category algebras are generalized polynomial algebra
(see Example 2). On the other hand, the following theorem, which shows that category
algebras are generalized matrix algebras (see Example 7), also follows by definition:

Theorem 3 (Matrix Calculus). For any α, α′ ∈ R[C], C, C′ ∈ |C| and r ∈ R, the followings hold:

(α′ + α)C = α′C + αC, C′(α′ + α) =C′ α′ +C′ α,

C′(α′ + α)C =C′ α′C +C′ αC

(r′αr)C = r′ αCr, C′(r′αr) = r′ C′αr, C′(r′αr)C = r′ C′αCr

(α′α)C = α′ αC = ∑
C′′∈|C|

α′C′′
C′′αC

C′(α′α) =C′ α′ α = ∑
C′′∈|C|

C′α′C′′
C′′α

C′(α′α)C =C′ α′ αC = ∑
C′′∈|C|

C′α′C′′
C′′αC.

The theorem above implies the following:
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Theorem 4. α ∈ R[C] is determined by its action on columns εC/ rows C′ε of the unit ε for all
C, C′ ∈ |C|.

Proof. Let α ∈ R[C] and ε be the unit of R[C]. Then by definition

α = αε, α = εα

holds and it implies αC = αεC, C′α = C′ε α, which determines α.

Remark 2. It is convenient to make use of a kind of “Einstein convention” in physics: Double
appearance of object indices which do not appear elsewhere means the sum over all objects in the
category. For instance,

C′(α′α)C =C′ α′C′′
C′′αC

means
C′(α′α)C = ∑

C′′∈|C|

C′α′C′′
C′′αC.

The notation is quite useful especially for category algebra R[C] where |C| is finite. In that
case it is easy to show the decomposition of unit:

ε = εC
Cε.

As a corollary,
α′α = α′εα = α′εC

Cεα = α′C
Cα,

holds, which means that the multiplication can be interpreted as inner product of columns and rows.
Hence, you can insert C

C in formulae when C does not appear elsewhere.

3. Example of Category Algebras

Let us see some important examples of category algebras.

Example 1 (Function Algebra). Let C be a set as discrete category, i.e., a category whose arrows
are all identities. Then R[C] is nothing but the R-valued function algebra on |C|, where the
operations are defined pointwise.

When the rig R is commutative such as R = C, the function algebra is also commu-
tative. On the other hand, a category algebra is in general noncommutative even if the
rig is commutative. In this sense, category algebras can be considered to be generalized
(noncommutative) function algebras.

As we have noted, category algebras can also be considered to be generalized polyno-
mial algebras:

Example 2 (Monoid Algebra). Let C be a monoid, i.e., a category with only one object. Then
R[C] is the monoid algebra of C. For example, in the case of C = N as additive monoid, R[C] is the
polynomial algebra over R.

Since a monoid C has only one object, any α ∈ R[C] can be presented as,

α = ∑
c∈C

α(c)χc

by Theorem 2 which make it clear that R[C] is a generalized polynomial algebra.
As special cases of Example 2, we have group algebras.

Example 3 (Group Algebra). Let C be a group, i.e., a monoid whose arrows are all invertible.
Then R[C] coincides with the group algebra of C. For example, in the case of C = Z, R[C] is the
Laurent polynomial algebra over R.
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By another generalization of Example 3 other than Example 2, we have groupoid algebras.

Example 4 (Groupoid Algebra). Let C be a groupoid, i.e., a category whose arrows are all
invertible. When |C| is finite, R[C] is nothing but the groupoid algebra of |C|. Otherwise R[C] is a
unital extension of the groupoid algebra in conventional sense which is nonunital. R[C] is quite
useful to treat certain algebras which appeared in quantum physics [17]. (See Example 5 also.)

As special cases of the Example 4 we have matrix algebras:

Example 5 (Matrix Algebra). Let C be an indiscrete category, i.e., a category such that for every
pair of objects C, C′ there is exactly one arrow from C to C′. Denote the cardinal of |C| is n. Then
R[C] is isomorphic to the matrix algebra Mn(R).

Example 5 above shows that matrix algebras are category algebras. Conversely, any
category algebra can be considered to be generalized matrix algebra (see Theorem 3). This
point of view is also useful to study quivers [23], i.e., directed graphs with multiple edges
and loops.

Example 6 (Path Algebra). Let C be the free category of a quiver Q. R[C] coincides with the
notion of path algebra when the quiver Q has finite number of vertices. Otherwise, the former
includes the latter as a subalgebra.

Another important origin of the notion of category algebra is that of incidence algebra
([8,10–14], for example) originally studied on posets [9].

Example 7 (Incidence Algebra). Let C be a finely finite category [8], i.e., a category such that for
any c ∈ C there exist finite number of pairs of arrows c′, c′′ ∈ C satisfying c = c′ ◦ c′′. Then RC ,
the set of all functions from C to R, becomes a unital algebra and called the incidence algebra of C
over R.

Let C be a category such that for any C ∈ C there exist at most finitely many arrows
whose codomain is C. Then R0[C] coincides with the incidence algebra on C. (One of
the most classical examples is the poset consisting of all positive integers ordered by
divisibility). For the category satisfying the condition above, R[C] includes the zeta function
ζ defined as

ζ(c) = 1

for all c. The multiplicative inverse of ζ is denoted as µ and called Möbius function. The
relation µζ = ζµ = ε is a generalization of the famous Möbius inversion formula, which
has been considered to be the foundation of combinatorial theory since one of the most
important papers in modern combinatorics [9].

4. States on Categories

We will introduce the notion of states on categories to provide a foundation for
stochastic theories on categories. As we will see, we can construct noncommutative
probability space, a generalized notion of measure theoretic probability space based on
category algebras. The key insight is that what we need to establish statistical law is
the expectation functional, which is the functional which maps each random variable
(or “observable” in the quantum physical context) to its expectation value. Considering
a functional on R[C] as expectation functional, we can interpret R[C] as an algebra of
noncommutative random variables, such as observables of quanta.

Definition 7 (Linear Functional). Let A be an algebra over a rig R. An R-valued linear function
on A, i.e., a function preserving addition and scalar multiplication, is called a linear functional on
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A. A linear functional on A is said to be unital if ϕ(ε) = 1 where ε and 1 denote the multiplicative
unit in A and R, respectively.

Definition 8 (Linear Functional on Category). Let R be a rig and C be a category. A (unital)
linear functional on R[C] is said to be an R-valued (unital) linear functional on the category C.

Although the main theme here is stochastic theory making use of positivity structure
defined later, linear functionals on category algebras are used not only in the context
with positivity. A very interesting example is “umbral calculus” [24], an interesting tool
in combinatorics, which can be interpreted as the theory of linear functionals on certain
monoid algebras. Hence, studying the linear functionals on a category will lead to a
generalization of umbral calculus.

Given a linear functional on a category, we obtain a function on the set of arrows.
For categories with a finite number of objects, we can characterize the former in terms of
the latter:

Theorem 5 (Linear Function and Function). Let ϕ be a R-valued linear functional on C. Then
the function ϕ̂ defined as

ϕ̂(c) = ϕ(χc)

becomes a Z(R)-valued function on C, i.e., an R-valued function satisfying rϕ̂(c) = ϕ̂(c)r for any
c ∈ C and r ∈ R. Conversely, when |C| is finite, any Z(R)-valued function φ on C gives R-valued
linear functional φ̌ defined as

φ̌(α) = ∑
c∈C

α(c)φ(c) = ∑
c∈C

φ(c)α(c)

and the correspondence is bijective.

Proof. Let ϕ be a R-valued linear functional. Since rχc = χcr for any r ∈ R and c ∈ C, we
have rϕ(χc) = ϕ(χc)r which means rϕ̂(c) = ϕ̂(c)r. The converse direction and bijectivity
directly follows from definitions and Theorem 2.

As a corollary we also have the following:

Theorem 6 (Unital Linear Functional and Normalized Function). Let C be a category such
that |C| is finite. Then there is one to one correspondence between R-valued unital linear functionals
ϕ and normalized Z(R)-valued functions φ on C, i.e., Z(R)-valued functions φ satisfying

∑
C∈|C|

φ(C) = 1.

(Please note that we identify objects and identity arrows.)

To define the notion of state as generalized probability measure which can be applied
in noncommutative contexts such as stochastic theory on category algebras, we need the
notions of involution and positivity structure.

Definition 9 (Involution on Category). Let C be a category. A covariant/contravariant endo-
functor (·)† on C is said to be a covariant/contravariant involution on C when (·)† ◦ (·)† is equal
to the identity functor on C. A category with contravariant involution which is identity on objects
is called a †-category.

Remark 3. For the studies on involutive categories, which are categories with involution satisfying
certain conditions, see [20,22] for example.



Symmetry 2021, 13, 1172 8 of 12

Definition 10 (Involution on Rig). Let R be a rig. An operation (·)∗ on R preserving addition
and covariant/contravariant with respect to multiplication is said to be a covariant/contravariant
involution on R when (·)∗ ◦ (·)∗ is equal to the identity function on R. A rig with contravariant
involution is called a ∗-rig.

Definition 11 (Involution on Algebra). Let A be an algebra over a rig R with a covariant (resp.
contravariant) involution (·) . A covariant (resp. contravariant) involution (·)∗ on A as a rig is
said to be a covariant (resp. contravariant) involution on A as an algebra over R if it is compatible
with scalar multiplication, i.e.,

(r′ar)∗ = r′a∗r (covariant case), (r′ar)∗ = ra∗r′ (contravariant case).

An algebra A over a ∗-rig R with contravariant involution is called a ∗-algebra over R.

Theorem 7 (Category Algebra as Algebra with Involution). Let C be a category with a
covariant (resp. contravariant) involution (·)† and R be a rig with a covariant (resp. contravariant)
involution (·). Then the category algebra 0R0[C] becomes an algebra with covariant involution
(resp. ∗-algebra) over R.

Proof. The operation (·)∗ defined as α∗(c) = α(c†) becomes a covariant (resp. contravari-
ant) involution on 0R0[C]. For the contravariant case,

(αβ)∗(c) = αβ(c†) = ∑
c†=c′◦c′′

α(c′)β(c′′) = ∑
c†=c′◦c′′

α(c′)β(c′′) = ∑
c†=c′◦c′′

β(c′′) α(c′)

which is equal to ∑c=c′′†◦c′† β(c′′) α(c′). By changing the labels of arrows, it can be rewritten
as

∑
c=c′′†◦c′†

β(c′′) α(c′) = ∑
c=c′◦c′′

β(c′†) α(c′′†) = ∑
c=c′◦c′′

β∗(c′)α∗(c′′) = β∗α∗(c).

The proof for the covariant case is similar and more straightforward.

Every category/rig has a trivial involution (identity). Thus, any category algebra
0R0[C] can be considered to be algebra with involution. In physics, especially quantum
theory, the ∗-algebra 0R0[C] where C is a groupoid as †-category with inversion as involution
and R = C as ∗-rig with complex conjugate as involution. (For the importance of groupoid
algebra in physics, see [17] and references therein, for example).

Based on the involutive structure we can define the positivity structure on algebras:

Definition 12 (Positivity). A pair of rigs with involution (R, R+) is called a positivity structure
on R if R+ is a subring such that r, s ∈ R+ and r + s = 0 implies r = s = 0, and that a∗a ∈ R+

for any a ∈ R.

The most typical examples are (C,R≥0), (R,R≥0), and (R≥0,R≥0). Another interest-
ing example is the tropical algebraic one (R∪ {∞},R∪ {∞}) where R∪ {∞} is considered
to be a rig with respect to min and +.

Definition 13 (State). Let R be a rig with involution and (R, R+) be a positivity structure on
R. A state ϕ on an algebra A with involution over R with respect to (R, R+) is a unital linear
functional ϕ : A −→ R which satisfies ϕ(a∗a) ∈ R+ and ϕ(a∗) = ϕ(a) for any a ∈ R, where
(·)∗ and (·) denotes the involution on A and R, respectively.

Remark 4. The last condition ϕ(a∗) = ϕ(a) follows from other conditions if R = C.
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Definition 14 (Noncommutative Probability Space). A pair (A, ϕ) consisting of an algebra A
with involution over a rig R with involution and an R-valued state ϕ is called a noncommutative
probability space.

There are many studies on noncommutative probability spaces where the algebra A
is a ∗-algebra over C. As is well known, the notion of noncommutative probability space
essentially includes the one of probability spaces in conventional sense, which corresponds
to the cases that algebras A are commutative ∗-algebras (with certain topological structure).
On the other hand, when the algebras are noncommutative, noncommutative probability
spaces provide many examples which cannot be reduced to conventional probability spaces,
such as models for quantum systems.

Definition 15 (State on Category). Let R be a rig with involution and (R, R+) be a positivity
structure on R. A state on the category algebra 0R0[C] over R with respect to (R, R+) is said to be
a state on a category C with respect to (R, R+).

As category algebras are in general noncommutative, states on categories provide
many concrete noncommutative probability spaces generalizing such simplest examples
as interacting Fock spaces [25] which are generalized harmonic oscillators, where the
categories are indiscrete categories corresponding to certain graphs.

The notion of state can be characterized for the categories with finite number of objects
as follows:

Theorem 8 (State and Normalized Positive Semidefinite Function). Let C be a category
such that |C| is finite. Then there is one to one correspondence between states ϕ with respect to
(R, R+) and normalized positive semidefinite Z(R)-valued functions φ with respect to (R, R+),
i.e., normalized functions such that

∑
{(c,c′)|dom((c′)†)=cod(c)}

ξ(c′)φ((c′)† ◦ c)ξ(c)

is in R+ for any function ξ on C with finite support and that φ(c†) = φ(c), where (·)∗ and (·)
denotes the involution on A and R, respectively.

Proof. Please note that a function ξ on C with finite support can be considered to be
an element in 0R0[C] and vice versa when |C| is finite. Then the theorem follows from
the identity

ξ∗ξ = ( ∑
c′∈C

ξ((c′)†)χc′)(∑
c∈C

χcξ(c))

= ( ∑
c′∈C

ξ(c′)χ(c′)†
)(∑

c∈C
χcξ(c))

= ∑
{(c,c′)|dom((c′)†)=cod(c)}

ξ(c′)χ(c′)†◦cξ(c).

and the condition corresponding to ϕ(ξ∗) = ϕ(ξ).

The theorem above is a generalization of the result stated in Section 2.2.2 in [17] for
groupoid algebras over C. For the case of discrete category, the notion coincides with the
notion of probability measure on objects (identity arrows). Hence, the notion of state on
category can be considered to be noncommutative generalization of probability measure
which is associated with the transition from set as discrete category (0-category) to general
category (1-category).
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Given a state on a †-category, we can construct a kind of GNS (Gelfand–Naimark–Segal)
representation [18,19] (as for generalized constructions, see [20–22,26,27] for example) in a
semi-Hilbert module defined below, a generalization of Hilbert space:

Definition 16 (Semi-Hilbert Module over Rig). Let R be a rig with involution (·). A right
module E over R equipped with a positive semidefinite sesquilinear form, i.e., a function 〈·|·〉 :
E× E −→ R satisfying

〈v′′|v′r′ + vr〉 = 〈v′′|v′〉r′ + 〈v′′|v〉r

〈v′|v〉 = 〈v|v′〉

〈v|v〉 ∈ R+

for any v, v′, v′′ ∈ E and r, r′ ∈ R is called a semi-Hilbert module over R.

When a semi-Hilbert module over E is also a left module over R, the set End(E) con-
sisting of module endomorphisms over R on E becomes an algebra over R: The bimodule
structure is given by (r′Tr)(v) = r′T(rv), where T ∈ End(E) and r, r′ ∈ R.

Theorem 9 (Generalized GNS Representation). Let A be an ∗-algebra over a rig R with
involution (·)∗. For any state ϕ on A with respect to (R, R+), there exist a semi-Hilbert module Eϕ

over R which is also a left R module equipped with a positive semidefinite sesquilibear form 〈·|·〉ϕ,
an element eϕ ∈ Eϕ such that 〈eϕ|eϕ〉ϕ = 1, and a homomorphism πϕ : A −→ End(Eϕ) between
algebras over R such that

ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ

and
〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ

hold for any α ∈ A and v, v′ ∈ Eϕ.

Proof. Let Eϕ be the algebra A itself as a module over R equipped with 〈·|·〉ϕ defined by
〈α′|α〉ϕ = ϕ((α′)∗α). It is easy to show that 〈·|·〉ϕ is a positive semidefinite sesquilinear
form and satisfies ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ, and 〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ where πϕ

denotes the homomorphism πϕ : A −→ End(Eϕ) defined by πϕ(α) = α(·), the left
multiplication by α, and eϕ denotes the unit ε of A as an element of Eϕ.

Remark 5. When the rig R is actually a ring, we can construct ∗-representation of A as follows
(This idea is due to Malte Gerhold): We call an endomorphism T on a semi-Hilbert module E
adjointable if there is a (not necessarily unique) adjoint, i.e., an endomorphism T∗ with 〈v′|Tv〉 =
〈T∗v′|v〉 for any v, v′ ∈ E. When E is also a left R module, the set of adjointable endomorphisms
Adj(E) becomes a subalgebra over R of End(E). The set Nul(E) = {T|〈v′|Tv〉 = 0, ∀v, v′ ∈ E}
becomes a two-sided ideal in Adj(E). When R is a ring, the quotient of Adj(E) by Nul(E) becomes
a ∗-algebra and we can construct the ∗-representation of A, since we can show that the two “adjoints”
of an endomorphism coincide up to some element of Nul(E) by taking subtraction of endomophisms
and can define the “taking adjoint” as involution operation in the quotient. In more general
cases (especially for the rigs such that the cancellation law for addition does not hold), the GNS
construction might not necessarily lead to a ∗-representations by adjointable endomorphisms.

When A is a ∗-algebra over C, we can prove Cauchy-Schwarz inequality for semi-
Hilbert space. Then the set Nϕ = {α ∈ A|〈α|α〉ϕ = 0} becomes a subspace of A. By taking
the quotient Eϕ = A/Nϕ, which becomes a pre-Hilbert space, we obtain the following
“GNS (Gelfand–Naimark–Segal)” representation of A.

Theorem 10 (GNS Representation). Let A be a ∗-algebra over C. For any state ϕ on A with
respect to (C,R≥0), there exist a pre-Hilbert space Eϕ over C equipped with an inner product
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〈·|·〉ϕ, an element eϕ ∈ Eϕ such that 〈eϕ|eϕ〉ϕ = 1, and a homomorphism πϕ : A −→ End(Eϕ)
between algebras over R such that

ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ

and
〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ

hold for any α ∈ A and v, v′ ∈ Eϕ.

By taking completion we have usual Hilbert space formulation popular in the context
of quantum mechanics.

Remark 6. If the state ϕ is fixed as “standard” one, such as “vacuum”, the Dirac bracket notation
becomes valid if we interpret as follows:

|α〉 = πϕ(α), 〈α| = ϕ(α∗(·)), 〈α′|α〉 = ϕ(a∗b), |0〉 = |ε〉 (vacuum).

As corollaries of theorems above, we have the following results, which are extensions
of the Theorem 1 in [17]. :

Theorem 11 (Generalized GNS Representation of †-Category). Let C be a †-category and R
be a ∗-rig. For any ϕ be a state on C with respect to (R, R+), there exist a semi-Hilbert module Eϕ

over R which is also a left R module equipped with a sesquilinear form 〈·|·〉ϕ, an element eϕ ∈ Eϕ

such that 〈eϕ|eϕ〉ϕ = 1, and a homomorphism πϕ : 0R0[C] −→ End(Eϕ) between algebras over
R such that

ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ

and
〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ

hold for any α ∈ A and v, v′ ∈ Eϕ.

Theorem 12 (GNS Representation of †-Category). Let C be a †-category. For any ϕ be a
state on C with respect to (C,R≥0), there exist a pre-Hilbert space Eϕ over C equipped with
an inner product 〈·|·〉ϕ, an element eϕ ∈ Eϕ such that 〈eϕ|eϕ〉ϕ = 1, and a homomorphism
πϕ : 0R0[C] −→ End(Eϕ) between algebras over C such that

ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ

and
〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ

hold for any α ∈ A and v, v′ ∈ Eϕ.
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