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Abstract: In this study, we develop quantum measurement theory for quantum systems described by
C∗-algebras. This is the first step to establish measurement theory for interacting quantum fields with
off-shell momenta. Unlike quantum mechanics (i.e., quantum systems with finite degrees of freedom),
measurement theory for quantum fields is still in development because of the difficulty of quantum
fields that are typical quantum systems with infinite degrees of freedom. Furthermore, the mathematical
theory of quantum measurement is formulated in the von Neumann algebraic setting in previous
studies. In the paper, we aim to extend the applicable area of quantum measurement theory to quantum
systems described by C∗-algebras from a mathematical viewpoint, referring to the sector theory that
is related to symmetry and based on the theory of integral decomposition of states. In particular, we
define central subspaces of the dual space of a C∗-algebra and use them to define instruments. This
attempt makes the connection between measurement theory and sector theory explicit and enables us
to understand the macroscopic nature and the physical meaning of measurement.

Keywords: quantum measurement; C∗-algebra; algebraic quantum field theory; local net; extension
of local net; completely positive instrument; macroscopic distinguishability

1. Introduction

In this study, we develop a measurement theory for quantum systems described by
C∗-algebras. Interacting quantum fields assumed in this study are quantum systems with
infinite degrees of freedom and with off-shell momenta, whose observables are given by
self-adjoint elements of C∗-algebras. The C∗-algebraic approach to quantum fields is not
unrelated to the usual approach by field operators. It is a powerful way to remove the
difficulty of unbounded operators by making them bounded operators. For example, in a
free real Bose field, the exponential eiφ( f ) (or resolvent) of the field operator φ( f ), where
f is a real function, is a bounded operator, and the collection of them generates a C∗-
algebra. This study is inspired by the measurement of the quantum field generated by the
interaction between the electromagnetic field and electrons at the nanoscale, which is called
the dressed photon (DP) phenomenon [1]. It is known to behave completely differently
from electromagnetic waves propagating in free space or electromagnetic fields in a uniform
medium, and has long been studied as near-field optics. The measurement theory for such
systems is still unexplored, and we believe that a framework extending the current theory
is necessary. For this reason, we adopt an approach based on both algebraic quantum
field theory (AQFT) and quantum measurement theory and their mathematics. There are
many examples of the contribution of mathematics to the progress of physical theories,
and the introduction of new mathematics contributes greatly to the implementation of
new physical concepts. In the study, we will actively use the mathematical framework for
conceptual advancement.

In the algebraic formulation of quantum theory, the observable algebra of a quantum
system is described by a ∗-algebra X , and a state is described by an expectation functional
ω on X . From an algebraic point of view, Hilbert space is treated as a secondary one
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to be used in analysis as needed. For each state ω, a Hilbert space is given by the GNS
representation (πω,Hω, Ωω):

ω(X) = 〈Ωω |πω(X)Ωω〉 (1)

for all X ∈ X . C∗-algebras, a special case of ∗-algebra, are used in AQFT [2–4]. Various
Hilbert spaces can be given by the GNS representation, and the fact that the representation
has a physical meaning as well as the Hilbert space itself primarily promotes the conceptual
understanding of the algebraic formulation. The contribution of Haag and Kastler [2] to
this progress has been significant. Although there are studies on the algebraic formulation
prior to their study, Ref. [2] is probably the first to successfully confront the fact that
there are many different representations (depending on the choice of state). In [2], the
“physical equivalence” of representations (also called weak equivalence) was used to give a
clear meaning to the replacement between equivalent representations. In [5–8], a physical
meaning was given to the situation in (A)QFT where different representations chosen by
the DHR selection criterion coexist. It is a criterion that selects representations equivalent
(through unitary transformations) to the vacuum representation (obtained from the GNS
representation from the vacuum state) of the observable algebra on the domain which is
spatial to some bounded domain. A representation satisfying this criterion describes a
situation in which localized excitations of the quantum field exist. It was shown in [9] that a
class (collection) of representations satisfying certain conditions corresponds to a situation
where topological charges exist, and that, by using these representations, field algebra
F and global gauge group G are reconstructed from observable algebra A. This result
is known as an iconic result in AQFT. Representations with different charges form their
own sectors (with unitary equivalence), which are not only unitarily inequivalent but also
mutually “disjoint”, giving rise to the so-called “superselection rule”. This result is closely
related to the representation theory of field operators including the algebra of canonical
commutation relations, where unitarily inequivalent representations arise (see [10–13] and
references therein). Global gauge group G here is an unbroken symmetry, and the results
of [9] are not valid for broken symmetries [14]. The extension of Ref. [9]’s results to broken
symmetry situations was done in [14,15], and Ojima [16] defined the generalized sector as
a “quasi-equivalence class of factor states”, allowing for a unified treatment of macroscopic
aspects in quantum systems in various contexts, including measurement.

To date, the instrument introduced by Davies and Lewis [17] has contributed greatly to
the development of quantum measurement theory. They introduced instruments from a sta-
tistical viewpoint, and specified probability distributions and states after the measurement
obtained by measuring a system using the measurement apparatus. However, because the
relationship between the instrument and the usual quantum mechanical description was
not clear at first, the analysis using the instrument did not progress until the investigation
by Ozawa [18]. He introduced a completely positive instrument and a measuring process,
the latter being used for quantum mechanical modeling of measurement. Every measuring
process defines a completely positive instrument. The main result of [18] is the converse in
a quantum system with finite degrees of freedom, i.e., every completely positive instrument
in such a system is defined by a measuring process. This is a standard fact in quantum
measurement theory now. Furthermore, the theory of completely positive instruments in
quantum systems with infinite degrees of freedom described by the general von Neumann
algebra has recently been developed in [19,20]. C∗-algebras and von Neumann algebras can
be viewed as non-commutative versions of topological and measurable spaces, respectively.
The latter is a special case of the former, but their analysis methods are very different. In
the current measurement theory, focusing on probability distributions and states after the
measurement has led to the selection of components to be macroscopic by the measurement
and the successful investigation of the relationship with quantum mechanical modeling.

In order to formulate the measurement theory for quantum systems described by C∗-
algebras, the more general case compared to von Neumann algebras, we believe that it is
necessary to integrate a completely positive instrument and the sector theoretical treatment
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of the macroscopic aspect of the quantum system. The reason for this is that, because the
concept of state is statistically characterized, we consider that the difference of values output
by the measurement should be macroscopically distinguished by the disjointness of states
of the composite system of the system and the measuring apparatus. In other words, a
measurement is a physical process that leads to the situation wherein different output values of
the measuring apparatus correspond to mutually disjoint states of the composite system. From
this viewpoint, a measuring process, a quantum mechanical modeling of the measurement,
is of course important historically and theoretically, but it should not necessarily be the first
consideration in establishing the physical meaning and description of the measurement.
On the other hand, this study is advantageous in that the identification of sectors by the
measurement is justified by the measurement-theoretic description. We are convinced that the
establishment of the measurement theory in quantum systems described by C∗-algebras will
open up new perspectives for the understanding of macroscopic aspects of quantum systems.
Herein, we reexamine the result of [21]. While [21] focused on the use of measuring processes,
we make thorough use of the instrument in this study.

In Section 2, the local net and open system are discussed and the description of dynamics as
an open system in AQFT is stated. In Section 3, we review the sector theory and its mathematics.
In Section 4, the central subspaces of the dual of a C∗-algebra are defined. In the C∗-algebraic
setting, we define instruments in terms of central subspaces. Furthermore, we define and
characterize central instruments in order to examine the differences between the C∗-algebraic
setting and the von Neumann algebraic setting. In Section 5, we summarize the results of the
study and present the perspective.

2. Systems of Interest: Local Nets and Open System
2.1. C∗-Algebraic Quantum Theory

All the statistical aspects of a physical system S are registered in a C∗-probablity space
(X , ω), a pair of a C∗-algebra X , and a state ω on X [21]. Observables of S are described
by self-adjoint elements of X . On the other hand, the state ω is an expectation functional
on X and statistically describes a physical situation (or an experimental setting) of S. We
keep claiming that every quantum system is described in the language of noncommutative
(quantum) probability theory (see [22] for an introduction to quantum probability theory).
In Appendix A, the basic facts on operator algebras are summarized.

2.2. Local Net

Let M be a manifold or a (locally finite) graph. We suppose that M describes the
space-time or the space under consideration. R denotes the set of bounded regions of M,
which satisfies ∪R = M. M ∈ R is assumed when M is bounded.

Definition 1 (local net). A family {A(O)}O∈R of C∗-algebras is called a local net on M if it
satisfies the following conditions:
(i) For every inclusion O1 ⊂ O2, we have A(O1) ⊂ A(O2).
(ii) For any mutually causally separated (spatial) regions O1 and O2,

[A(O1),A(O2)] = {AB− BA|A ∈ A(O1), B ∈ A(O2)} = {0}. (2)

For every local net {A(O)}O∈R on M, there exists a C∗-algebra

A =
⋃
O∈R
A(O)

‖·‖
, (3)

called the global algebra of {A(O)}O∈R. If M is bounded, then A = A(M) since M ∈ R
and O ⊂ M for all O ∈ R. When a group G acts on R as a symmetry, we assume the
covariance condition for {A(O)}O∈R: there exists an automorphic action α of G on A
such that



Symmetry 2021, 13, 1183 4 of 19

αg(A(O)) = A(gO) (4)

for all g ∈ G and O ∈ R, where gO = {gx|x ∈ O}.
To describe the statistical aspect of quantum fields by a local net {A(O)}O∈R, states

on the global algebra A or “local states” [23] are used.

2.3. Open System

We shall discuss how to describe the dynamics of open systems. In the context of
quantum statistical mechanics, open systems are a subject that has been discussed for a
long time. Open systems are also fundamental in quantum field theory, and are closely
related to scattering theory. In particular, it is a necessary description of the dynamics
in the paper concerning the DP as a typical example of off-shell quantum fields. This is
because the DP phenomena are known to involve the process of generation by incident
light and annihilation that changes to scattered light. On the other hand, it is essential that
the quantum field considered here is a quantum system with an infinite degree of freedom
system, and we should pay attention to the description of its dynamics (see Section 4 for
details). In the following, we introduce the mathematical concepts necessary to describe
the dynamics of open systems.

The discussion below is based on the understanding that closed systems are a special
case of open systems. We consider a quantum system S described by a C∗-algebra X . Every
time evolution of S as a closed system is described by an automorphism of X . Furthermore,
when the time t is parametrized by R, the time evolution of S as a closed system is
described by a strongly continuous automorphism group α : R 3 t 7→ αt ∈ Aut(X )
satisfying α0 = idX , αs ◦ αt = αs+t and α−t = α−1

t for all s, t ∈ R. In contrast to a closed
system, the time evolution of an open system is described by a completely positive map
T : X → X . The complete positivity of maps between C∗-algebras is defined as follows:

Definition 2 (Complete positivity [24–27]). Let C and D be C∗-algebras. A linear map T : C →
D is said to be completely positive (CP) if

n

∑
i,j=1

D∗i T(C∗i Cj)Dj ≥ 0 (5)

for all n ∈ N, C1, · · · , Cn ∈ C and D1, · · · , Dn ∈ D.

It is known that a CP map is positive, but the converse is not true. Every homo-
morphism of a C∗-algebra C into a C∗-algebra D is CP. In particular, all automorphisms
of a C∗-algebra C are CP. For every C∗-algebra C and n ∈ N, Mn(C) denotes the C∗-
algebra of square matrices of order n whose entries are elements of C. For every lin-
ear map T : C → D and n ∈ N, a linear map T(n) : Mn(C) → Mn(D) is defined by
T(n)(C) = (T(Cij)) for all C = (Cij) ∈ Mn(C). A linear map T : C → D is said to be
n-positive if T(n) : Mn(C)→ Mn(D) is positive. A linear map T : C → D is CP if and only
if it is n-positive for all n ∈ N. The dual map T∗ : D∗ → C∗ of T : C → D is defined by

(T∗ϕ)(C) = ϕ(T(C)) (6)

for all ϕ ∈ D∗ and C ∈ C. T is CP if and only if the linear mapD∗ 3 ϕ 7→ ∑n
i,j=1 CiT∗(Di ϕD∗j )

C∗j ∈ C∗ is positive for all n ∈ N, C1, · · · , Cn ∈ C and D1, · · · , Dn ∈ D. Here, for every
A, B ∈ D and ϕ ∈ D∗, Aϕ, ϕB, AϕB ∈ D∗ are defined by

(Aϕ)(D) = ϕ(DA), (7)

(ϕB)(E) = ϕ(BE), (8)

(AϕB)(F) = ϕ(BFA), (9)

respectively, for all D, E, F ∈ D.
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The following structure theorem for normal CP maps defined on B(H) is well-known.

Theorem 1. LetH be a separable Hilbert space. Let T be a normal CP map on B(H).
(1) There exist a separable Hilbert space K, an element ξ of K, a positive operator R on K, and a
unitary operator U onH⊗K such that

T(X) = TrK[U∗(X⊗ R)U(1⊗ |ξ〉ξ|)] (10)

for all X ∈ B(H).
(2) There exists a family {Ki}∞

i=1 of bounded operators onH such that

T(X) =
∞

∑
i=1

K∗i XKi (11)

for all X ∈ B(H).

The proof of this theorem is given in Appendix B. The dynamics of open systems in the
Heisenberg picture are described by a quantum stochastic process in the sense of Accardi–
Frigerio–Lewis [28,29]. Following their study, measurement theory in the Heisenberg
picture is formulated in [20].

3. Sector Theory

The concept of sector is defined by Ojima [16] as follows:

Definition 3. A sector of X is a quasi-equivalence class of a factor state.

A state on X is called a factor if the center Zω(X ) = πω(X )′′ ∩ πω(X )′ of πω(X )′′

is trivial, i.e., Zω(X ) = C1. Let π be a representation of X on a Hilbert space H. We say
that a linear functional ω on X is π-normal if there exists a trace-class operator σ on H
such that

ω(X) = Tr[π(X)σ] (12)

for all X ∈ X .

Definition 4. Let π1 and π2 be a representation of X on Hilbert spacesH1 andH2, respectively.
(1) π1 and π2 are quasi-equivalent, written as π1 ≈ π2, if every π1-normal state is π2-normal
and vice versa.
(2) π1 and π2 are mutually disjoint, written as π1 ◦

–

π2, if no π1-normal state is π2-normal and
vice versa.

Two states ω1 and ω2 onX are quasi-equivalent (mutually disjoint, resp.), written as ω1 ≈ ω2
(ω1 ◦

–

ω2, resp.), if πω1 and πω2 are quasi-equivalent (mutually disjoint, resp.).

The sector theory based on sector defined above has already been discussed in [16,21].
However, we believe that mathematics related to sector theory should be reexamined in
order to develop measurement theory for quantum systems described by C∗-algebras.
The following theorem mathematically justifies the definition of sector, which is obvious
from [30] (Corollary 5.3.6).

Theorem 2. Two factor states ω1 and ω2 are either quasi-equivalent or disjoint.

By the above theorem, two factor states ω1 and ω2 belong to different sectors if and
only if ω1 ◦

–

ω2. A sector corresponds to a macroscopic situation where order parameters
of the system have definite values. Although the unitary equivalence of states is efficient
for pure states, physically important states are not always pure. For example, KMS states
in some quantum system with infinite degrees of freedom are of type III. We would like to
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stress that the unitary equivalence class of a pure state is not appropriate for a unit of the
state space. The reason will be discussed later.

Next, we shall define the notion of orthogonality of states. The order relation ω1 ≤ ω2
for two positive linear functionals ω1 and ω2 on X is defined by

ω1(X) ≤ ω2(X) (13)

for all X ∈ X+.

Definition 5. Let ω1, ω2 be positive linear functionals on X . We say that ω1 and ω2 are mutually
orthogonal, written as ω1⊥ω2, if there exists no non-zero positive linear functional ω′ such that
ω′ ≤ ω1 and ω′ ≤ ω2.

The following theorem shows the gap between the disjointness and the orthogonality
of states.

Theorem 3 ([31] (Lemma 4.1.19 and Lemma 4.2.8)). Let ω1, ω2 be positive linear functionals
on X . Put ω = ω1 + ω2.
(1) If ω1 and ω2 are mutually orthogonal, then there exists an orthogonal projection P ∈ πω(X )′

such that

ω1(X) = 〈Ωω |Pπω(X)Ωω〉, ω2(X) = 〈Ωω |(1− P)πω(X)Ωω〉 (14)

for all X ∈ X .
(2) If ω1 and ω2 are mutually disjoint, then there exists an orthogonal projection C ∈ Zω(X )
such that

ω1(X) = 〈Ωω |Cπω(X)Ωω〉, ω2(X) = 〈Ωω |(1− C)πω(X)Ωω〉 (15)

for all X ∈ X .

The topology of S(X ) used here is the restriction of the weak∗-topology of X ∗ to
S(X ). That is to say, it is generated by the basis B = {Oω({Xi, εi}n

i=1) | ω ∈ S(X ), n ∈
N, X1, · · · , Xn ∈ X , ε1, · · · , εn > 0}, where Oω({Xi, εi}n

i=1) = {ω′ ∈ S(X) | ∀i =
1, · · · , n, |ω(Xi)− ω′(Xi)| < εi}. Then, S(X ) is a compact convex set, and we use the
Borel field B(S(X )) of S(X ) generated by this topology. A positive linear functional ω on
X is called a barycenter of a regular Borel measure µ on S(X ) if

ω =
∫
S(X )

ρ dµ(ρ). (16)

µ is then called a barycentric measure of ω.

Definition 6. A regular Borel measure µ on S(X ) is orthogonal if∫
∆

ρ dµ(ρ) ⊥
∫

∆c
ρ dµ(ρ) (17)

for all ∆ ∈ B(S(X )). Oω(S(X )) denotes the set of orthogonal measures on S(X ) with barycenter ω.

The following theorem characterizes orthogonal measures of a state.

Theorem 4 ([31] (Theorem 4.1.25)). Let X be a unital C∗-algebra and ω a state on X . There is a
one-to-one correspondence between the following three sets:
(i) the orthogonal measures µ ∈ Oω(S(X ));
(ii) the abelian von Neumann subalgebras B of πω(X )′;
(iii) the orthogonal projections P onHω such that PΩω = Ωω and Pπω(X )P ⊆ {Pπω(X )P}′.
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If µ, B and P are in correspondence, one has the following conditions:
(1) B = (πω(X ) ∪ {P})′;
(2) P is the orthogonal projection onto BΩω;
(3) µ(X̂1 · · · X̂n) = 〈Ωω |πω(X1)Pπω(X2)P · · · Pπω(Xn)Ωω〉;
(4) B is ∗-isomorphic to the range of the map κµ : L∞(S(X ), µ) 3 f 7→ κµ( f ) ∈ πω(X )′

defined by

〈Ωω |κµ( f )πω(X)Ωω〉 =
∫
S(X )

f (ρ) X̂(ρ) dµω(ρ) (18)

for all X ∈ X and f ∈ L∞(S(X ), µ), where X̂ ∈ C(S(X )) is defined by X̂(ρ) = ρ(X) for all
ρ ∈ S(X ). κµ satisfies

κµ(X̂)πω(Y)Ωω = πω(Y)Pπω(X)Ωω (19)

for all X, Y ∈ X .

By Theorems 3 and 4, we have the following theorem:

Theorem 5 ([31] (Proposition 4.2.9)). Let ω be a state on X and µ a barycentric measure of ω.
The following conditions are equivalent.
(1) For every ∆ ∈ B(S(X )), ∫

∆
ρ dµ(ρ) ◦

– ∫
∆c

ρ dµ(ρ). (20)

(2) µ is orthogonal, and κµ(L∞(S(X ), µ)) is a von Neumann subalgebra of the center Zω(X ) of
πω(X )′′.

For every ω ∈ S(X ), µω denotes the orthogonal measure with barycenter ω corre-
sponding to the center Zω(X ) of πω(X )′′. µω is called the central measure of ω. The
following theorem shows that the central measure gives the unique integral decomposition
into mutually different sectors.

Theorem 6 ([31] (Theorem 4.2.11)). The central measure µω of a state ω on X is pseudosup-
ported by the set S f (X ) of factor states on X , i.e., µω(∆) = 0 for all ∆ ∈ B(S(X )) such that
∆ ∩ S f (X ) = ∅. If X is separable, then µω is supported by S f (X ).

That is to say, the concept of sector is applicable to any states via their central measures.
L∞(S(X ), µω) then describes the observable algebra that distinguishes sectors in ω and
is ∗-isomorphic to Zω(X ). The ∗-isomorphism κω := κµω : L∞(S(X ), µω) → Zω(X ),
defined by

〈Ωω |κω( f )πω(X)Ωω〉 =
∫
S(X )

f (ρ) X̂(ρ) dµω(ρ) (21)

for all X ∈ X and f ∈ L∞(S(X ), µω), justifies this statement. By the definition, all elements
of the centerZω(X ) of πω(X )′′ are compatible with those of πω(X )′′. The following theorem
is also shown.

Theorem 7 ([31] (Theorem 4.2.5)). Let ω be a state on X and µ an orthogonal measure with
barycenter ω corresponding to a maximal abelian von Neumann subalgebra (MASA) of πω(X )′.
Then, µ is pseudosupported by the set Se(X ) of pure states on X . If X is separable, then µ is
supported by Se(X ).

An orthogonal measure corresponding to a MASA of πω(X )′ gives an irreducible
decomposition of the state. In general, MASA of πω(X )′ is not unique. The situation where
MASA of πω(X )′ is unique is special. This is the reason why the unitary equivalence class
of a pure state is not appropriate for a unit of the state space. It is known that πω(X )′′ is a
type I von Neumann algebra if πω(X )′ is abelian. The following theorem characterizes
such a situation in the context of orthogonal decompositions of states.
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Theorem 8 ([31] (Theorem 4.2.3)). Let ω be a state on X , and P the projection operator onHω

whose range is πω(X )′Ωω. The following conditions are equivalent:
(1) πω(X )′ is abelian;
(2) Pπω(X )P generates an abelian algebra.

4. Completely Positive Instrument

In this section, we analyze the concept of CP instrument in the C∗-algebraic setting.
In previous investigations [17–20], it has been examined in the von Neumann algebraic
formulation of quantum theory. The generalization to C∗-algebra is realized in terms
of central subspaces of the dual of a C∗-algebra. Our approach enables us to unify the
measurement theory with sector theory.

4.1. Definition

Since the investigation [17] by Davies and Lewis, instruments have been defined on
the predual of a von Neumann algebra. In order to define its C∗-algebraic generalization,
the dual space of a C∗-algebra is too big in general. When a von Neumann algebraM
on a Hilbert space K is not finite-dimensional, the predualM∗ ofM does not coincide
withM∗, i.e.,M∗ (M∗. In addition, in the case where all physically relevant states are
contained inM∗, the whole spaceM∗ is not needed. This does not depend on whether
M is treated as a C∗-algebra or a von Neumann algebra. In the C∗-algebraic formulation
introduced here, we can naturally useM∗ as a domain of instruments.

Let X be a C∗-algebra and π a representation of X on a Hilbert spaceH. LetM be a
von Neumann algebra on a Hilbert space K. Z(M) denotes the center ofM. We define
the subset V(π) of X ∗ by

V(π) = {ϕ ∈ X ∗ | ∃ρ ∈ (π(X )′′)∗, ∀X ∈ X , ϕ(X) = ρ(π(X))}. (22)

A subspace L of X ∗ is said to be central if there exists a central projection C of X ∗∗,
i.e., C ∈ Z(X ∗∗), such that L = CX ∗. Central subspaces of X ∗ are characterized as closed
invariant subspaces (see [26] (Chapter III, Theorem 2.7)). A central subspace L(= CX ∗) is
said to be σ-finite if its dual L∗(∼= CX ∗∗) is a σ-finite W∗-algebra. For every M1, M2 ∈ V∗
and ρ ∈ V , we define M1ρ, ρM2, M1ρM2 ∈ V by

〈M, M1ρ〉 = 〈MM1, ρ〉, (23)

〈M, ρM2〉 = 〈M2M, ρ〉, (24)

〈M, M1ρM2〉 = 〈M2MM1, ρ〉, (25)

respectively, for all M ∈ V∗. The usefulness of the central subspace can be seen in the
following example:

Example 1 (See [26] (Chapter III) for example). (1) Let X be a C∗-algebra and π a representa-
tion of X on a Hilbert spaceH. There exists a central projection C(π) of X ∗∗ such that

V(π) = C(π)X ∗ = {C(π)ϕ | ϕ ∈ X ∗} = {ϕ ∈ X ∗ | C(π)ϕ = ϕ}. (26)

(2) LetM be a von Neumann algebra on a Hilbert spaceH. There exists a central projection C of
M∗∗ such thatM∗ = CM∗.

The following theorem is known.

Theorem 9. Let X be a C∗-algebra and π1 and π2 representations of X on Hilbert spacesH1 and
H2, respectively. The following conditions are equivalent:
(1) π1 ≈ π2. (2) V(π1) = V(π2). (3) C(π1) = C(π2).

Similarly, the following conditions are equivalent:
(4) π1 ◦

–

π2 (5) V(π1) ∩V(π2) = {0}. (6) C(π1)C(π2) = 0.



Symmetry 2021, 13, 1183 9 of 19

The former part of this theorem is shown in [26] (Chapter III, Proposition 2.12). We
can show the latter part in a similar way.

We shall define instruments in terms of central subspaces in the fully C∗-algebraic
setting. LetM and N be W∗-algebras. P(M∗,N∗) denotes the set of positive linear maps
ofM∗ into N∗. In addition, for any Banach space L, 〈·, ·〉 denotes the pairing of L∗ and L.

Definition 7 (instrument). Let Vin and Vout be σ-finite central subspaces of C∗-algebras X and
Y , respectively, and (S,F ) a measurable space. I is called an instrument for (X ,Vin,Y ,Vout, S)
if it satisfies the following three conditions:
(1) I is a map of F into P(Vin,Vout).
(2) 〈1, I(S)ρ〉 = 〈1, ρ〉 for all ρ ∈ Vin.
(3) For every ρ ∈ Vin, M ∈ V∗out and mutually disjoint sequence {∆j}j∈N of F ,

〈M, I(∪j∆j)ρ〉 =
∞

∑
j=1
〈M, I(∆j)ρ〉. (27)

WhenX = Y , an instrument I for (X ,Vin,Y ,Vout, S) is called that, for (X ,Vin,Vout, S).
Furthermore, when Vin = Vout = V , an instrument I for (X ,Vin,Vout, S) is called for
(X ,V , S). In particular, an instrument for (M,M∗, S) is called for (M, S). For every
instrument I for (Vin,Vout, S) and normal state ϕ on V∗in, we define the probability measure
‖Iϕ‖ on (S,F ) by ‖Iϕ‖(∆) = ‖I(∆)ϕ‖ for all ∆ ∈ F . For every instrument I for
(X ,Vin,Y ,Vout, S), the dual map I∗ : V∗out ×F → V∗in of I is defined by

〈M, I(∆)ρ〉 = 〈I∗(M, ∆), ρ〉 (28)

for all ρ ∈ Vin, M ∈ V∗out and ∆ ∈ F .

Definition 8. An instrument I for (X ,Vin,Y ,Vout, S) is said to be completely positive (CP) if
the map V∗out 3 M 7→ I∗(M, ∆) ∈ V∗in is CP for all ∆ ∈ F .

For every map J : V∗out ×F → V∗in satisfying the following three conditions, there
uniquely exists an instrument I for (X ,Vin,Y ,Vout, S) such that J = I∗:
(1) For every ∆ ∈ F , the map V∗out 3 M 7→ J (M, ∆) ∈ V∗in is normal, positive, and linear.
(2) J (1, S) = 1.
(3) For every ρ ∈ Vin, M ∈ V∗out and mutually disjoint sequence {∆j}j∈N of F ,

〈J (M,∪j∆j), ρ〉 =
∞

∑
j=1
〈J (M, ∆j), ρ〉. (29)

From now on, I denotes the dual map I∗ of an instrument I for (X ,Vin,Y ,Vout, S).
The dual map of an instrument for (X ,Vin,Y ,Vout, S) is also called an instrument for
(X ,Vin,Y ,Vout, S).

4.2. Central Decomposition of State via CP Instrument

Let V be a σ-finite central subspace of the dual space of a C∗-algebra X and (S,F )
a measurable space. Let C : F → Z(V∗) be a projection valued measure (PVM). A CP
instrument IC for (X ,V , S) is defined by

IC(∆)ρ = C(∆)ρ (30)

for all ρ ∈ V and ∆ ∈ F .



Symmetry 2021, 13, 1183 10 of 19

Theorem 10. IC satisfies the following conditions:
(1) IC(S)ρ = ρ for all ρ ∈ V .
(2) It is repeatable, i.e., it satisfies

IC(∆)IC(Γ) = IC(∆ ∩ Γ) (31)

for all ∆, Γ ∈ F .
(3) For every ρ ∈ V+ := V ∩ X ∗+ and ∆ ∈ F , IC(∆)ρ and IC(∆c)ρ are mutually disjoint.
(4) For every ∆ ∈ F , IC(∆) is V∗-bimodule map, i.e., for every ∆ ∈ F , ρ ∈ V and M1, M2 ∈ V∗,

IC(∆)(M1ρM2) = M1(IC(∆)ρ)M2. (32)

Conversely, if an instrument I for (V , S) satisfies the conditions (2) and (4), then there exists a
spectral measure C : F → Z(V∗) such that I = IC.

Proof. We can easily check (1), (2), and (4). (3) is shown by using Theorem 9.
The converse is also obvious as follows. We define a map C : F → V∗ by C(∆) =

I(1, ∆) for all ∆ ∈ F . For every ∆ ∈ F , ρ ∈ V and M ∈ V∗, we have

〈M, I(∆)ρ〉 = 〈1, I(∆)(ρM)〉 = 〈C(∆), ρM〉 = 〈MC(∆), ρ〉. (33)

〈M, I(∆)ρ〉 = 〈C(∆)M, ρ〉 is also shown in the same way. Therefore, we have 〈[C(∆), M], ρ〉
= 0 for all ∆ ∈ F , ρ ∈ V and M ∈ V∗. When ϕ is normal faithful state on V∗ and
ρ = ϕ([C(∆), M])∗, 〈([C(∆), M])∗[C(∆), M], ϕ〉 = 0, so that [C(∆), M] = 0 for all ∆ ∈ F
and M ∈ V∗. We obtain C(∆) ∈ Z(V∗) for all ∆ ∈ F .

By the conditions (2) and (4),

〈C(∆ ∩ Γ), ρ〉 = 〈1, I(∆ ∩ Γ)ρ〉 = 〈1, I(∆)I(Γ)ρ〉 = 〈C(∆), I(Γ)ρ〉
= 〈1, I(Γ)(ρC(∆))〉 = 〈C(Γ), ρC(∆)〉 = 〈C(∆)C(Γ), ρ〉. (34)

Thus, C : F → Z(V∗) is a PVM, and we have I = IC.

An instrument I for (X ,Vin,Y ,Vout, S) is said to be subcentral if, for every ρ ∈ Vin,+
and ∆ ∈ F , IC(∆)ρ and IC(∆c)ρ are mutually disjoint. The condition (3) in Theorem 10
is a special case of the subcentrality of instruments. P(X ,V) denotes the subset {IC|C :
F → Z(V∗) is a PVM.} of the set of instruments defined on V . An instrument I for
(X ,V , S) is said to be central if it is an element of P(X ,V) and is the maximum in P(X ,V),
where the maximum is due to the (pre)order ≺ on instruments defined as follows: For
instruments I1, I2 for (X ,Vin,Y ,Vout, S1) and (X ,Vin,Y ,Vout, S2), respectively, I1 ≺ I2 if
I1(F )ρ ⊂ I2(F )ρ for all ρ ∈ S(X ) ∩ Vin, where Ii(Fi)ρ, i = 1, 2, is the subset of (Vin)+
defined by Ii(Fi)ρ = {Ii(∆i)ρ | ∆i ∈ Fi}. By Theorem 10, we have the following theorem.

Theorem 11. Let (S,F ) be a measurable space, V a σ-finite central subspace of the dual of a
C∗-algebra X , and C : F → Z(V∗) a PVM. IC is central if and only if the abelian W∗-algebra
generated by {C(∆)|∆ ∈ F} is isomorphic to Z(V∗).

5. Operational Requirement and Macroscopic Distinguishability

In this section, we discuss the characterization of CP instruments. We deepen our
conceptual understanding of measurement theory by referring to the mathematics of sector
theory. In sector theory, we explained that a sector is a macroscopic unit. As an application
of sector theory to measurement theory, we follow the macroscopic distinction made by the
disjointness of states. That is, in contrast to the usual understanding of measurement, our
understanding is that a measurement is a physical process that realizes macroscopically
distinguishable situations when different values are output. In past investigations, the
concept of CP instrument has been justified by clarifying the statistical properties that a
measuring apparatus should satisfy from an operational point of view in the (extended)
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Schrödinger picture. We first review this here. Next, we proceed to characterize CP
instruments from the perspective of the macroscopic distinguishability of states, which is
related to sector theory.

Here, we assume that the system S is described by a C∗-algebra X and that Vin a
σ-finite central subspace of X ∗. We consider a measuring apparatus A(x) with output
variable x to measure the system S, where x takes values in a measurable space (S,F ). In
the following, we consider three assumptions from an operational point of view. They are
modified from [19,32] in the C∗-algebraic setting.

Assumption 1. A(x) statistically specifies the following two components:
(1) the probability measure Pr{x ∈ ∆‖ω}, ∆ ∈ F , on (S,F ) for every initial state ω ∈ S(X )∩Vin.
(2) the state ω{x∈∆} (on a C∗-algebra Y) after the measurement under the condition that ω is an
initial state and output values not contained in ∆ are ignored. For every ω ∈ S(X ) ∩ Vin and
∆ ∈ F , ω{x∈∆} is unique whenever Pr{x ∈ ∆‖ω} 6= 0, or is indefinite otherwise.

From now on, we consider only the case of X = Y for simplicity. The joint probability
distribution of the successive measurement of A(x) and A(y) in this order in a state
ω ∈ Vin ∩ S(X ) is given by

Pr{x ∈ ∆, y ∈ Γ‖ω} = Pr{x ∈ ∆‖ω}Pr{y ∈ Γ‖ω{x∈∆}} (35)

for all ∆ ∈ F and Γ ∈ F ′.

Assumption 2. For every ∆ ∈ F , measuring apparatus A(y) whose output variable y takes values
in a measurable space (S′,F ′), and Γ ∈ F ′, the map S(X ) ∩ Vin 3 ω 7→ Pr{x ∈ ∆, y ∈ Γ‖ω}
is affine, that is,

Pr{x ∈ ∆, y ∈ Γ‖αω1 + (1− α)ω2} = αPr{x ∈ ∆, y ∈ Γ‖ω1}+ (1− α)Pr{x ∈ ∆, y ∈ Γ‖ω2} (36)

for all α ∈ [0, 1] and ω1, ω2 ∈ S(X ) ∩ Vin.

The affine property of joint distributions of successive measurements characterizes
the instrument as shown in the following theorem.

Theorem 12. Let A(x) be a measuring apparatus satisfying Assumption 1. Suppose that there
exists a σ-finite central subspace Vout of X such that {ω{x∈∆}|ω ∈ S(X ) ∩ Vin, ∆ ∈ F} ⊂ Vout.
The following conditions are equivalent:
(1) A(x) satisfies Assumption 2.
(2) There exists an instrument I for (Vin,Vout, S) such that

Pr{x ∈ ∆‖ω} = ‖I(∆)ω‖ (37)

for all ω ∈ S(X ) ∩ Vin and ∆ ∈ F , and that

ω{x∈∆} =
I(∆)ω
‖I(∆)ω‖ (38)

whenever Pr{x ∈ ∆‖ω} 6= 0.

The complete positivity of instrument is based on the general description of the
dynamics of open systems. In Section 2, we discussed the dynamics of open systems
state/representation-independently. We consider the following assumption that is called
the trivial extendability.
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Assumption 3. For any quantum system S′ that is described by a C∗-algebra Y and does not
interact with an apparatus A(x) nor S, A(x) can be extended into an apparatus A(x′) measuring
the composite system S + S′ with the following statistical properties:

Pr{x′ ∈ ∆‖ω⊗ ϕ} = Pr{x ∈ ∆‖ω}, (39)

(ω⊗ ϕ){x′∈∆} = ω{x∈∆} ⊗ ϕ (40)

for all ω ∈ Vin ∩ S(X ), ϕ ∈ W ∩ S(Y) and ∆ ∈ F , whereW is a central subspace of Y∗.

Let M and N be von Neumann algebras. For every σ ∈ N∗, we define a map
id⊗ σ :M⊗ N →M by 〈ρ⊗ σ, X〉 = 〈ρ, (id⊗ σ)(X)〉 for all ρ ∈ M∗ and X ∈ M ⊗ N .

A measuring apparatus that satisfies Assumption 3 is described by a CP instrument.
In the von Neumann algebraic setting, a measuring process is defined as follows.

Definition 9 (Measuring process [19] (Definition 3.2)). LetM be a von Neumann algebra on a
Hilbert spaceH, and (S,F ) a measurable space. A 4-tuple M = (K, σ, E, U) is called a measuring
process for (M, S) if it satisfies the following conditions:
(1) K is a Hilbert space,
(2) σ is a normal state on B(K),
(3) E : F → B(K) is a spectral measure,
(4) U is a unitary operator onH⊗K,
(5) {IM(M, ∆) | M ∈ M, ∆ ∈ F} ⊂ M, where IM : B(H)×F → B(H) is defined by

IM(X, ∆) = (id⊗ σ)[U∗(X⊗ E(∆))U] (41)

for all X ∈ B(H) and ∆ ∈ F .

As shown in [18], every CP instrument for (B(H), S) is defined by a measuring
process. By contrast, in the case whereM is a non-atomic injective von Neumann algebra,
it is shown in [19] that there exist CP instruments for (M, S) which cannot be defined
by any measuring processes. Furthermore, a necessary and sufficient condition for a CP
instrument to be defined by a measuring process is given in [19].

In the context of measurement, we do not always care about sectors as a macroscopic
unit, but we actively utilize the macroscopic distinction based on the disjointness. We
introduce two kinds of subcentral lifting property for instruments as follows.

Definition 10. An instrument I for (X ,V , S) is said to have the first subcentral lifting property
if there exists a central subspaceW of the dual space of a C∗-algebra Y(⊃ X ) and an instrument Ĩ
for (X ,V ,Y ,W , S) satisfying the following two conditions:
(1) For every ω ∈ S(X ) ∩ V and ∆ ∈ F , Ĩ(∆)ω ◦

–

Ĩ(∆c)ω.
(2) For every ω ∈ S(X ) ∩ V , X ∈ X and ∆ ∈ F , [Ĩ(∆)ω](X) = [I(∆)ω](X).

Definition 11. An instrument I for (X ,V , S) is said to have the second subcentral lifting property
if there exists a central subspaceW of the dual space of a C∗-algebra Y(⊃ X ) and an instrument Ĩ
for (Y ,W , S) satisfying the following two conditions:
(1) For every ϕ ∈ S(Y) ∩W and ∆ ∈ F , Ĩ(∆)ϕ ◦

–

Ĩ(∆c)ϕ.
(2) For every ω ∈ S(X ) ∩ V , there exists ω̃ ∈ S(Y) ∩ W such that ω̃(X) = ω(X) and
[Ĩ(∆)ω̃](Y) = [I(∆)ω](Y) for all X, Y ∈ X and ∆ ∈ F .

Both subcentral lifting properties characterize the measurement obtained by restricting
a measurement, which realizes the disjointness of states (after the measurement) of a larger
system corresponding to different output values, to the target system. On the other hand,
the difference between these two properties may be obvious from the definitions.
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An instrument I for (X ,Vin,Y ,Vout, S) is said to be finite if there exists a finite subset
S0 of S and a map T : S0 → P(Vin,Vout) such that

I(∆) = ∑
s∈S0∩∆

T(s) (42)

for all ∆ ∈ F .

Theorem 13. Every finite instrument for (X ,V , S) has the first subcentral lifting property and
the second subcentral lifting property.

Proof. Let I be a finite instrument for (X ,V , S), a finite subset S0 of S, and a map T :
S0 → P(V) satisfying Equation (42) for all ∆ ∈ F . For every ∆ ∈ F , a linear map
Ĩ(∆) : V → V ⊗ l1(S0) is defined by

Ĩ(∆)ω = ∑
s∈S0∩∆

T(s)ω⊗ δs (43)

for all ω ∈ V . Then, Ĩ is a finite instrument for (X ,V ,X ⊗min l∞(S0),V ⊗ l1(S0), S).
Then, Ĩ satisfies Ĩ(∆)ω ◦

–
Ĩ(∆c)ω for all ω ∈ S(X ) ∩ V and ∆ ∈ F . Furthermore, every

ω ∈ S(X ) ∩ V , X ∈ X and ∆ ∈ F , [Ĩ(∆)ω](X ⊗ 1) = [I(∆)ω](X). Therefore, I has the
first subcentral lifting property.

Next, we define a finite instrument Î for (X ⊗min l∞(S0),V ⊗ l1(S0), S) by

Î(∆)ϕ = Ĩ(∆)(j(ϕ)) (44)

for all ∆ ∈ F and ϕ ∈ V ⊗ l1(S0), where j : V ⊗ l1(S0)→ V is a linear map defined by

[j(ϕ)](X) = ϕ(X⊗ 1) (45)

for all X ∈ X . For every ϕ ∈ S(X ⊗min l∞(S0))∩ (V ⊗ l1(S0)) and ∆ ∈ F , Î(∆)ϕ ◦

–

Î(∆c)ϕ.
For every ω ∈ S(X ) ∩ V , ω̃ = ω ⊗ δs0 , where s0 ∈ S0 satisfies ω̃(X ⊗ 1) = ω(X) and
[Ĩ(∆)ω̃](Y ⊗ 1) = [I(∆)ω](Y) for all X, Y ∈ X and ∆ ∈ F . Therefore, I has the second
subcentral lifting property.

We conjecture that every CP instrument has both subcentral lifting properties.

6. Discussion and Perspectives

In the study, we have defined instruments by using central subspaces of the dual of a
C∗-algebra. We have checked its consistency with the definition in the von Neumann alge-
braic setting. This result means that the extension of the measurement theory to C∗-algebra
in the paper is valid. Furthermore, we have proposed a unification of the measurement the-
ory and the sector theory: we have defined and characterized the centrality of instruments.
In addition, we have discussed the operational characterization and macroscopic nature
of quantum measurement. In the context, we have actively used the disjointness of states
to distinguish different output values of the meter. Our results are, of course, applicable
to systems described by C*-algebras generated from field operators, and the macroscopic
aspects of quantum fields can now be discussed in terms of measurement theory.

In the setting of AQFT, we use a local net {A(O)}O∈R1 on a space M1 in order to
describe the DP phenomena. In describing the measurement of DPs, only the use of the local
net first adopted is not enough. In fact, to detect (the effect of) DPs, we need an operation
wherein some probe is brought closer to the spatial scale at which DPs are generated. We
introduced an extension of a local net to mathematically describe the operation at the level
of observable algebras.
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Definition 12. Let {A(O)}O∈R1 and {B(O)}O∈R2 be local nets on M1 and M2, respectively.
{B(O)}O∈R2 is an extension of {A(O)}O∈R1 if it satisfies the following three conditions:
(i) M1 ⊂ M2.
(ii) R1 ⊂ R2.
(iii) For every O ∈ R1, A(O) ⊂ B(O).

We use the extensions of a local net because the construction of the composite system
of the system of interest and a measuring apparatus is not so simple. In particular, the
construction of the composite system by the tensor product is not always applicable to
quantum fields.

Let {B(O)}O∈R2 be a local net on M2 and an extension of a local net {A(O)}O∈R1 on
M1. We suppose that M1 is bounded. The composite system of the original system and a
probe, which is close to the original system on the spatial scale where DPs are generated, is
described by {B(O)}O∈R2 as a quantum field. Furthermore, the material system, which
is a part of the composite system, is assumed to be localized in the neighborhood of M1.
In the composite system, the generation and annihilation of DPs constantly occur near
non-uniform materials in the unstable situation where light continues to incident constantly.
By measuring the emitted light at regions far from M1, we check (or estimate) the effect of
DPs generated in M1.

Constructing a concrete model of DPs as a quantum field in order to correlate experi-
ments of DPs with the theory is a future task. We hope to describe the DP phenomena as
open systems at the next stage. In the future, clarification of the relationship between this
study and the recent trends in DP research [33] is required. Moreover, the mathematical
theory of quantum measurement for quantum systems described by C∗-algebras should be
further developed.
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Appendix A. Operator Algebra

We introduce the basic facts on operator algebras. See [26,30,31,34–37] for more details
on operator algebras. A set X is called a C∗-algebra if it satisfies the following conditions:
(1) X is a Banach space over C.
(2) X is a ∗-algebra, i.e., it is an algebra with involution. The involution ∗ : X → X satisfies
(aX + bY)∗ = āX∗ + b̄Y∗, (XY)∗ = Y∗X∗, and X∗∗ := (X∗)∗ = X for all a, b ∈ C and
X, Y ∈ X .
(3) The norm of X satisfies ‖X∗X‖ = ‖X‖2 for all X ∈ X .

We assume that C∗-algebras are unital.
Let X and Y be C∗-algebras. A map j : X → Y is called a ∗-homomorphism if it

satisfies the following conditions:
(i) j(aX1 + bX2) = aj(X1) + bj(X2) for all a, b ∈ C and X1, X2 ∈ X .
(ii) j(X1X2) = j(X1)j(X2) for all X1, X2 ∈ X .
(iii) j(X∗) = j(X)∗ for all X ∈ X .
(iv) j(1) = 1.
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A ∗-homomorphims β of X is called a ∗-automorphism of X if there exists a ∗-
homomorphims γ of X such that β ◦ γ = idX and γ ◦ β = idX . Aut(X ) denotes the set
of automorphisms of X . A ∗-homomorphism and a ∗-automorphism are simply called a
homomorphism and an automorphism, respectively.

Let ω be a linear functional on X .
(i) ω is positive if ω(X∗X) ≥ 0 for all X ∈ X .
(ii) ω is normalized if ω(1) = 1.

X ∗ denotes the set of (complex) linear functionals on X . X ∗+ denotes the set of positive
linear functionals on X . A linear functional on X is called a state on X if it is positive and
normalized. S(X ) denotes the set of states on X . A state ω on X is faithful if ω(X∗X) = 0
implies X = 0. A C∗-algebraW is called a W∗-algebra if it is the dual of a Banach spaceW∗,
called the predual ofW . The second dual X ∗∗ = (X ∗)∗ of a C∗-algebra X is a W∗-algebra
and is called the universal enveloping algebra of X . A W∗-algebraW is said to be σ-finite
if it admits at most countably many orthogonal projections. A positive linear functional
ϕ onW is said to be normal if {ϕ(Aγ)}γ∈Γ converges to ϕ(A) for all non-decreasing nets
{Aγ}γ∈Γ of positive operators inW convergent to a positive operator A ∈ W . A positive
linear functional ϕ onW is normal if and only if ϕ ∈ W∗. B(H) denotes the set of bounded
linear operators on a Hilbert spaceH. A W∗-algebraM is called a von Neumann algebra
on a Hilbert spaceH if it is a subset of B(H), and the involution ofM coincides with the
adjoint operation on B(H). The predualM∗ of a von Neumann algebraM on a Hilbert
spaceH satisfies

M∗ = {ϕ ∈ M∗|∃ρ ∈ T(H) s.t. ϕ(M) = Tr[Mρ] for all M ∈ M}, (A1)

where T(H) denotes the set of trace-class operators onH.
For every state ω on X , there exist a Hilbert spaceHω, a representation πω of X on

Hω and a unit vector Ωω ofHω such that

ω(X) = 〈Ωω |πω(X)Ωω〉, X ∈ X , (A2)

and Hω = πω(X )Ωω. Here, a map π : X → B(H) is called a representation of X on a
Hilbert space H if it satisfies π(aX + bY) = aπ(X) + bπ(Y), π(XY) = π(X)π(Y), and
π(X∗) = π(X)∗ for all a, b ∈ C and X, Y ∈ X . The triple (πω,Hω, Ωω) is called the GNS
representation of ω and is unique up to unitary equivalence.

For any subset S of B(H), we define the commutant S′ of S by S′ = {A ∈ B(H) | ∀B ∈
S, AB = BA} and the double commutant S′′ of S by S′′ = (S′)′. πω(X )′′ and πω(X )′ are
then von Neumann algebras onHω.

Appendix B. The Proof of Theorem 1

First, we present theorems used to show Theorem 1.

Theorem A1 ([24–27,31]). Let X be a C∗-algebra and H a Hilbert space. For every CP map
T : X → B(H), there exist a Hilbert space K, a representation π of X on K, and V ∈ B(H,K)
such that

T(X) = V∗π(X)V (A3)

for all X ∈ X , and that K = span(π(X )VH). If X andH are separable, then so is K.

The triplet (π,K, V) is called a Stinespring representation of T, and is unique up to
unitary equivalence.

Theorem A2 ([26] (Chapter IV, Theorem 5.5)). LetM1 andM2 be von Neumann algebras on
Hilbert spaces H1 and H2, respectively. If π is a normal homomorphism ofM1 ontoM2, then
there exist a Hilbert space L, a projection E ofM′

1 ⊗ B(L), and an isometry U of E(H1 ⊗ L)
ontoH2 such that
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π(M) = UjE(M⊗ 1)U∗ (A4)

for all M ∈ M1, where jE : B(H1 ⊗ L) → EB(H1 ⊗ L)E is defined by jE(X) = EXE for all
X ∈ B(H1 ⊗L).M1 ⊗ C1 is then a multiplicative domain of jE.

As a corollary of Theorem A2, the following holds:

Corollary A1. LetH1 andH2 be Hilbert spaces. If π is a normal homomorphism of B(H1) onto
B(H2), then there exist a Hilbert space K and a unitary W ofH1 ⊗K ontoH2 such that

π(X) = W(X⊗ 1)W∗ (A5)

for all X ∈ B(H1).

Let X and Y be C∗-algebras. We define a partial order T1 ≤ T2 on CP(X ,Y) by
T2 − T1 ∈ CP(X ,Y).

Theorem A3 ([25] (Theorem 1.4.2)). Let T1, T2 be elements of CP(X , B(H)) such that T1 ≤ T2,
and (π,K, V) is the Stinespring representation of T2. There exists a positive operator R of π(X )′

such that
T1(X) = V∗Rπ(X)V (A6)

for all X ∈ X .

By using the above theorems, we show Theorem 1.

Proof of Theorem 1. Put P = T(1). Suppose P 6= 0 without loss of generality. We define a
unital normal CP map T′ on B(H) by

T′(X) =
1
‖P‖T(X) +

(
1− P
‖P‖

) 1
2
X
(

1− P
‖P‖

) 1
2

(A7)

for all X ∈ B(H). By Theorem A1, there exist a separable Hilbert space K′, a normal repre-
sentation π′ of X on K′, and an isometry V′ ∈ B(H,K) such that K′ = span(π′(X )V′H)
and that

T′(X) = (V′)∗π′(X)V′ (A8)

for all X ∈ B(H). Since
1
‖P‖T(X∗X) ≤ T′(X∗X) (A9)

for all X ∈ B(H), by Theorem A3, there exists a positive operator R′ of π′(X )′ such that

1
‖P‖T(X) = (V′)∗π′(X)R′V′ (A10)

for all X ∈ B(H). By Corollary A1, there exist a separable Hilbert space L1 and a unitary
operator W ∈ B(H⊗L1,K′) such that

π′(X) = W ′(X⊗ 1)W ′∗ (A11)

for all X ∈ B(H). There then exists a positive operator R′′ on L1 such that R′W ′ =
W ′(1⊗ R′′).

Let L2 be an infinite-dimensional separable Hilbert space, v a unit vector in L2, and y
a unit vector in L1. We define an isometry U : H⊗Cy⊗Cv→ H⊗L1 ⊗L2 by

U0(x⊗ y⊗ v) = (W ′)∗V′x⊗ v (A12)
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for all x ∈ H. SinceH⊗Cy⊗Cv and U0(H⊗Cy⊗Cv) satisfy dim((H⊗Cy⊗Cv)⊥) =
dim((U0(H⊗Cy⊗Cv))⊥) as subspaces of H⊗L1 ⊗L2, there exists a unitary operator
U on H⊗L1 ⊗L2 such that U|H⊗Cy⊗Cv = U0. We put K = L1 ⊗L2 and ξ = y⊗ v, and
define a positive operator R on K by R = ‖P‖R′′ ⊗ 1. For every X ∈ B(H) and x1, x2 ∈ H,
we obtain

〈x1|T(X)x2〉 = ‖P‖〈x1|(V′)∗W ′(X⊗ R′′)(W ′)∗V′x2〉
= ‖P‖〈(W ′)∗V′x1 ⊗ v|(X⊗ R′′ ⊗ 1)[(W ′)∗V′x2 ⊗ v]〉
= 〈U(x1 ⊗ y⊗ v)|(X⊗ R)[U(x2 ⊗ y⊗ v)]〉
= Tr[U∗(X⊗ R)U(|x2〉〈x1| ⊗ |ξ〉〈ξ|)] (A13)

= Tr[TrK[U∗(X⊗ R)U(1⊗ |ξ〉〈ξ|)]|x2〉〈x1|]
= 〈x1|TrK[U∗(X⊗ R)U(1⊗ |ξ〉〈ξ|)]x2〉,

which completes the proof of (1).
Next, we show (2). By Theorem A1, there exist a separable Hilbert space K1, a normal

representation π of X on K and V ∈ B(H,K) such that K1 = span(π(X )VH) and that

T(X) = V∗π(X)V (A14)

for all X ∈ B(H). By Corollary A1, there exist a separable Hilbert space K2 and a unitary
operator W ∈ B(K1,H⊗K2) such that

π(X) = W(X⊗ 1)W∗ (A15)

for all X ∈ B(H). Let {yi}
dim(K2)
i=1 be a complete orthonormal system of K2. For every

1 ≤ i ≤ dim(K2), we define Ki ∈ B(H) by

〈x1|Kix2〉 = 〈x1 ⊗ yi|W∗Vx2〉 (A16)

for all x1, x2 ∈ H. For every 1 ≤ i ≤ dim(K2), X ∈ B(H) and x1, x2 ∈ H, we have

〈x1|K∗i XKix2〉 = 〈Kix1|XKix2〉 =
dim(H)

∑
j=1
〈Kix1|zj〉〈zj|XKix2〉

=
dim(H)

∑
j=1
〈Kix1|zj〉〈X∗zj|Kix2〉

=
dim(H)

∑
j=1
〈W∗Vx1|zj ⊗ yi〉〈X∗zj ⊗ yi|W∗Vx2〉 (A17)

=
dim(H)

∑
j=1
〈W∗Vx1|(|zj〉〈zj| ⊗ |yi〉〈yi|)(X⊗ 1)W∗Vx2〉

= 〈W∗Vx1|(X⊗ |yi〉〈yi|)W∗Vx2〉 = 〈x1|V∗W(X⊗ |yi〉〈yi|)W∗Vx2〉.

Therefore, for every X ∈ B(H) and x1, x2 ∈ H, we obtain

〈x1|T(X)x2〉 = 〈x1|V∗W(X⊗ 1)W∗Vx2〉

=
dim(K2)

∑
i=1

〈x1|V∗W(X⊗ |yi〉〈yi|)W∗Vx2〉 (A18)

=
dim(K2)

∑
i=1

〈x1|K∗i XKix2〉 = 〈x1|
(

dim(K2)

∑
i=1

K∗i XKi

)
x2〉,

which completes the proof of (2).
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The proof of (1) in the above theorem refers to that of [18] (Theorem 5.1). The results
of this appendix are related to the theory of Hilbert modules [38–43].
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